"Appell-Lerch sums"의 두 판 사이의 차이
imported>Pythagoras0 |
Pythagoras0 (토론 | 기여) |
||
(다른 사용자 한 명의 중간 판 하나는 보이지 않습니다) | |||
14번째 줄: | 14번째 줄: | ||
* Zwegers used them to show that mock theta functions are essentially mock modular forms. | * Zwegers used them to show that mock theta functions are essentially mock modular forms. | ||
* The Appell–Lerch series is | * The Appell–Lerch series is | ||
− | + | :<math> | |
\mu(u,v;\tau) = \frac{i a^{1/2}}{\theta_{11}(v;\tau)}\sum_{n\in Z}\frac{(-b)^nq^{n(n+1)/2}}{1-aq^n} | \mu(u,v;\tau) = \frac{i a^{1/2}}{\theta_{11}(v;\tau)}\sum_{n\in Z}\frac{(-b)^nq^{n(n+1)/2}}{1-aq^n} | ||
− | + | </math> | |
where | where | ||
:<math>\displaystyle q= e^{2\pi i \tau},\quad a= e^{2\pi i u},\quad b= e^{2\pi i v}</math> | :<math>\displaystyle q= e^{2\pi i \tau},\quad a= e^{2\pi i u},\quad b= e^{2\pi i v}</math> | ||
22번째 줄: | 22번째 줄: | ||
:<math>\theta_{11}(v,\tau) = \sum_{n\in Z}(-1)^n b^{n+1/2}q^{(n+1/2)^2/2}</math> | :<math>\theta_{11}(v,\tau) = \sum_{n\in Z}(-1)^n b^{n+1/2}q^{(n+1/2)^2/2}</math> | ||
===completion by adding a non-holomorphic part=== | ===completion by adding a non-holomorphic part=== | ||
− | * definte | + | * definte <math>\hat\mu(u,v;\tau)</math> by |
:<math>\hat\mu(u,v;\tau) = \mu(u,v;\tau)-R(u-v;\tau)/2</math> | :<math>\hat\mu(u,v;\tau) = \mu(u,v;\tau)-R(u-v;\tau)/2</math> | ||
where | where | ||
:<math>R(z;\tau) = \sum_{\nu\in \mathbb{Z}+1/2}(-1)^{\nu-1/2}[{\rm sign}(\nu)-E\left((\nu+\frac{\Im(z)}{y})\sqrt{2y}\right)]e^{-2\pi i \nu z}q^{-\nu^2/2}</math> | :<math>R(z;\tau) = \sum_{\nu\in \mathbb{Z}+1/2}(-1)^{\nu-1/2}[{\rm sign}(\nu)-E\left((\nu+\frac{\Im(z)}{y})\sqrt{2y}\right)]e^{-2\pi i \nu z}q^{-\nu^2/2}</math> | ||
− | and | + | and <math>y=\Im(\tau)</math> and |
:<math>E(z) = 2\int_0^ze^{-\pi u^2}\,du</math> | :<math>E(z) = 2\int_0^ze^{-\pi u^2}\,du</math> | ||
32번째 줄: | 32번째 줄: | ||
===Mordell integral=== | ===Mordell integral=== | ||
* [[Mordell integrals]] | * [[Mordell integrals]] | ||
− | + | :<math> | |
\mu(u,v;\tau)+\sqrt{\frac{i}{\tau}}e^{\pi i \frac{(u-v)^2}{\tau}}\mu(\frac{u}{\tau},\frac{v}{\tau};-\frac{1}{\tau})=\frac{1}{2}M(u-v;\tau) | \mu(u,v;\tau)+\sqrt{\frac{i}{\tau}}e^{\pi i \frac{(u-v)^2}{\tau}}\mu(\frac{u}{\tau},\frac{v}{\tau};-\frac{1}{\tau})=\frac{1}{2}M(u-v;\tau) | ||
− | + | </math> | |
where | where | ||
− | + | :<math>M(v;\tau)=\int_{-\infty}^{\infty} \frac{e^{\pi i \tau x^2-2\pi v x}}{\cosh (\pi x)} dx</math> | |
− | * non-holomorpic part is an incomplete period integral of the modular form | + | * non-holomorpic part is an incomplete period integral of the modular form <math>\eta^3</math> |
− | + | :<math> | |
iR(0;\tau)=\int_{-\bar{\tau}}^{i\infty}\frac{\eta(z)^3}{\sqrt{\frac{z+\tau}{i}}}\,dz | iR(0;\tau)=\int_{-\bar{\tau}}^{i\infty}\frac{\eta(z)^3}{\sqrt{\frac{z+\tau}{i}}}\,dz | ||
− | + | </math> | |
* property | * property | ||
− | + | :<math> | |
R(z;\tau)+\sqrt{\frac{i}{\tau}}R(\frac{z}{\tau};-\frac{1}{\tau})=M(z;\tau) | R(z;\tau)+\sqrt{\frac{i}{\tau}}R(\frac{z}{\tau};-\frac{1}{\tau})=M(z;\tau) | ||
− | + | </math> | |
57번째 줄: | 57번째 줄: | ||
===special case=== | ===special case=== | ||
* mock theta function | * mock theta function | ||
− | + | :<math> | |
\mu(z;\tau):= \mu(z,z;\tau)= \frac{i e^{\pi i z}}{\theta_{11}(z;\tau)}\sum_{n\in Z}\frac{(-1)^nq^{n(n+1)/2}e^{2\pi i n z}}{1-q^ne^{2\pi i z}} | \mu(z;\tau):= \mu(z,z;\tau)= \frac{i e^{\pi i z}}{\theta_{11}(z;\tau)}\sum_{n\in Z}\frac{(-1)^nq^{n(n+1)/2}e^{2\pi i n z}}{1-q^ne^{2\pi i z}} | ||
− | + | </math> | |
* Mordell integrals | * Mordell integrals | ||
− | + | :<math> | |
\mu(z;\tau)+\sqrt{\frac{i}{\tau}}\mu(\frac{z}{\tau};-\frac{1}{\tau})=\frac{1}{2}M(0;\tau)=\frac{1}{2}\int_{-\infty}^{\infty} \frac{e^{\pi i \tau x^2}}{\cosh (\pi x)} dx | \mu(z;\tau)+\sqrt{\frac{i}{\tau}}\mu(\frac{z}{\tau};-\frac{1}{\tau})=\frac{1}{2}M(0;\tau)=\frac{1}{2}\int_{-\infty}^{\infty} \frac{e^{\pi i \tau x^2}}{\cosh (\pi x)} dx | ||
− | + | </math> | |
* completion | * completion | ||
− | + | :<math> | |
\hat{\mu}(z;\tau)=\mu(z;\tau)-R(0;\tau)/2 | \hat{\mu}(z;\tau)=\mu(z;\tau)-R(0;\tau)/2 | ||
− | + | </math> | |
* modularity | * modularity | ||
− | + | :<math> | |
\hat{\mu}(\frac{z}{\tau};\frac{-1}{\tau})=-\sqrt{\frac{\tau}{i}}\hat{\mu}(z;\tau) | \hat{\mu}(\frac{z}{\tau};\frac{-1}{\tau})=-\sqrt{\frac{\tau}{i}}\hat{\mu}(z;\tau) | ||
− | + | </math> | |
==higher level Appell function== | ==higher level Appell function== | ||
123번째 줄: | 123번째 줄: | ||
[[분류:mock modular forms]] | [[분류:mock modular forms]] | ||
[[분류:math]] | [[분류:math]] | ||
+ | [[분류:migrate]] |
2020년 11월 13일 (금) 08:49 기준 최신판
introduction
- one way to construct mock theta functions
- characters of representations in (nonrational) conformal field theory models based on Lie superalgebras\
- 3rd order mock theta functions
Appell-Lerch sum
- Appell–Lerch sums were first studied by Paul Émile Appell (1884) and Mathias Lerch (1892).
- Watson studied the order 3 mock theta functions by expressing them in terms of Appell–Lerch sums
- Zwegers used them to show that mock theta functions are essentially mock modular forms.
- The Appell–Lerch series is
\[ \mu(u,v;\tau) = \frac{i a^{1/2}}{\theta_{11}(v;\tau)}\sum_{n\in Z}\frac{(-b)^nq^{n(n+1)/2}}{1-aq^n} \] where \[\displaystyle q= e^{2\pi i \tau},\quad a= e^{2\pi i u},\quad b= e^{2\pi i v}\] and \[\theta_{11}(v,\tau) = \sum_{n\in Z}(-1)^n b^{n+1/2}q^{(n+1/2)^2/2}\]
completion by adding a non-holomorphic part
- definte \(\hat\mu(u,v;\tau)\) by
\[\hat\mu(u,v;\tau) = \mu(u,v;\tau)-R(u-v;\tau)/2\] where \[R(z;\tau) = \sum_{\nu\in \mathbb{Z}+1/2}(-1)^{\nu-1/2}[{\rm sign}(\nu)-E\left((\nu+\frac{\Im(z)}{y})\sqrt{2y}\right)]e^{-2\pi i \nu z}q^{-\nu^2/2}\] and \(y=\Im(\tau)\) and \[E(z) = 2\int_0^ze^{-\pi u^2}\,du\]
Mordell integral
\[ \mu(u,v;\tau)+\sqrt{\frac{i}{\tau}}e^{\pi i \frac{(u-v)^2}{\tau}}\mu(\frac{u}{\tau},\frac{v}{\tau};-\frac{1}{\tau})=\frac{1}{2}M(u-v;\tau) \] where \[M(v;\tau)=\int_{-\infty}^{\infty} \frac{e^{\pi i \tau x^2-2\pi v x}}{\cosh (\pi x)} dx\]
- non-holomorpic part is an incomplete period integral of the modular form \(\eta^3\)
\[ iR(0;\tau)=\int_{-\bar{\tau}}^{i\infty}\frac{\eta(z)^3}{\sqrt{\frac{z+\tau}{i}}}\,dz \]
- property
\[ R(z;\tau)+\sqrt{\frac{i}{\tau}}R(\frac{z}{\tau};-\frac{1}{\tau})=M(z;\tau) \]
modularity
\[\hat\mu(u+1,v;\tau) = a^{-1}bq^{-1/2}\hat\mu(u+\tau,v;\tau) = -\hat\mu(u,v;\tau),\] \[e^{2\pi i/8}\hat\mu(u,v;\tau+1) = \hat\mu(u,v;\tau) = -(\tau/i)^{-1/2}e^{\pi i (u-v)^2/\tau}\hat\mu(u/\tau,v/\tau;-1/\tau).\]
- In other words the modified Appell–Lerch series transforms like a modular form with respect to τ.
- Since mock theta functions can be expressed in terms of Appell–Lerch series this means that mock theta functions transform like modular forms if they have a certain non-analytic series added to them.
special case
- mock theta function
\[ \mu(z;\tau):= \mu(z,z;\tau)= \frac{i e^{\pi i z}}{\theta_{11}(z;\tau)}\sum_{n\in Z}\frac{(-1)^nq^{n(n+1)/2}e^{2\pi i n z}}{1-q^ne^{2\pi i z}} \]
- Mordell integrals
\[ \mu(z;\tau)+\sqrt{\frac{i}{\tau}}\mu(\frac{z}{\tau};-\frac{1}{\tau})=\frac{1}{2}M(0;\tau)=\frac{1}{2}\int_{-\infty}^{\infty} \frac{e^{\pi i \tau x^2}}{\cosh (\pi x)} dx \]
- completion
\[ \hat{\mu}(z;\tau)=\mu(z;\tau)-R(0;\tau)/2 \]
- modularity
\[ \hat{\mu}(\frac{z}{\tau};\frac{-1}{\tau})=-\sqrt{\frac{\tau}{i}}\hat{\mu}(z;\tau) \]
higher level Appell function
- higher-level Appell functions
- a particular instance of indefinite theta series
history
encyclopedia
articles
- Mortenson, Eric. 2012. “On the Dual Nature of Partial Theta Functions and Appell-Lerch Sums.” arXiv:1208.6316 [math], August. http://arxiv.org/abs/1208.6316.
- Tohru Eguchi and Kazuhiro Hikami Superconformal Algebras and Mock Theta Functions, 2009
- Some characters of Kac and Wakimoto and nonholomorphic modular functions.
- K. Bringmann and K. Ono, Math. Annalen 345, pages 547-558 (2009)
- Zwegers Appell-Lerch sums as mock modular forms, 2008
- A. M. Semikhatov Higher String Functions, Higher-Level Appell Functions, and the Logarithmic sℓ︿2k/u(1) CFT Model
- A.M. Semikhatov Higher-Level Appell Functions, Modular Transformations, and Characters
- Sander Zwegers, Mock Theta Functions, 2002
- Integrable highest weight modules over affine superalgebras and Appell’s function
- Kac V.G., Wakimoto M, Commun. Math. Phys. 215(3), 631–682 (2001)
- N = 2 superconformal minimal models
- Yutaka Matsuo Character Formula of C<1 Unitary representation of N=2 Superconformal Algebra , Prog. Theor. Phys. Vol. 77 No. 4 (1987) pp. 793-797
- C. Truesdell On a Function Which Occurs in the Theory of the Structure of Polymers, The Annals of Mathematics, Second Series, Vol. 46, No. 1 (Jan., 1945), pp. 144-157