"Derived functor"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
imported>Pythagoras0  (새 문서: ==introduction== * basic tool to define cohomology theory * extend a left invariant functor to get a derived functor * then we get a cohomology theory * e.g. sheaf cohomology of a top...)  | 
				Pythagoras0 (토론 | 기여)   | 
				||
| (사용자 2명의 중간 판 4개는 보이지 않습니다) | |||
| 3번째 줄: | 3번째 줄: | ||
* extend a left invariant functor to get a derived functor  | * extend a left invariant functor to get a derived functor  | ||
* then we get a cohomology theory  | * then we get a cohomology theory  | ||
| − | * e.g. sheaf cohomology of a topological space X with coefficients in a sheaf   | + | * e.g. sheaf cohomology of a topological space X with coefficients in a sheaf <math>\mathcal F</math> = the right derived functor of the global section functor    | 
==left invariant functors==  | ==left invariant functors==  | ||
===global section functor===  | ===global section functor===  | ||
| − | * a functor from sheaves on   | + | * a functor from sheaves on <math>X</math> to abelian groups defined by  | 
| − | + | :<math>  | |
\mathcal F \mapsto H^{0}(X, \mathcal F)  | \mathcal F \mapsto H^{0}(X, \mathcal F)  | ||
| − | + | </math>  | |
===invariants===  | ===invariants===  | ||
| − | *   | + | * <math>G</math> : group  | 
| − | * from modules of   | + | * from modules of <math>G</math> to abelian groups  | 
| − | + | :<math>  | |
M\mapsto M^{G}  | M\mapsto M^{G}  | ||
| − | + | </math>  | |
| + | |||
| + | |||
| + | ==related items==  | ||
| + | * [[Ext functor]]  | ||
| + | * [[Free resolutions]]  | ||
| + | |||
[[분류:Abstract concepts]]  | [[분류:Abstract concepts]]  | ||
| + | [[분류:migrate]]  | ||
| + | |||
| + | ==메타데이터==  | ||
| + | ===위키데이터===  | ||
| + | * ID :  [https://www.wikidata.org/wiki/Q320245 Q320245]  | ||
| + | ===Spacy 패턴 목록===  | ||
| + | * [{'LOWER': 'derived'}, {'LEMMA': 'functor'}]  | ||
2021년 2월 17일 (수) 01:36 기준 최신판
introduction
- basic tool to define cohomology theory
 - extend a left invariant functor to get a derived functor
 - then we get a cohomology theory
 - e.g. sheaf cohomology of a topological space X with coefficients in a sheaf \(\mathcal F\) = the right derived functor of the global section functor
 
left invariant functors
global section functor
- a functor from sheaves on \(X\) to abelian groups defined by
 
\[ \mathcal F \mapsto H^{0}(X, \mathcal F) \]
invariants
- \(G\) : group
 - from modules of \(G\) to abelian groups
 
\[ M\mapsto M^{G} \]
메타데이터
위키데이터
- ID : Q320245
 
Spacy 패턴 목록
- [{'LOWER': 'derived'}, {'LEMMA': 'functor'}]