"Supersymmetric quantum mechanics"의 두 판 사이의 차이
imported>Pythagoras0 |
Pythagoras0 (토론 | 기여) |
||
(사용자 2명의 중간 판 7개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
==introduction== | ==introduction== | ||
Consider a quantum mechanical system consisting of a Hilbert (Fock) | Consider a quantum mechanical system consisting of a Hilbert (Fock) | ||
− | space | + | space <math>\it F</math> and Hamiltonian <math>H</math>. The system is said to be |
supersymmetric quantum mechanical (SQM) if | supersymmetric quantum mechanical (SQM) if | ||
− | 1. | + | 1.<math>\it F</math> has a decomposition <math>{\it F}={\it F}^B \oplus {\it F}^F</math> |
− | and states in | + | and states in <math>{\it F}^B</math> and <math>{\it F}^F</math> are called bosonic and |
− | fermionic states respectively. There is an operator | + | fermionic states respectively. There is an operator <math>(-1)^F</math> such |
that | that | ||
\begin{eqnarray} | \begin{eqnarray} | ||
12번째 줄: | 12번째 줄: | ||
&&(-1)^F \Psi =-\Psi \ \ if \ \Psi \in {\it F}^F | &&(-1)^F \Psi =-\Psi \ \ if \ \Psi \in {\it F}^F | ||
\end{eqnarray} | \end{eqnarray} | ||
− | + | <math>F</math> and <math>(-1)^F</math> are called fermion number operator and chirality operator. | |
− | 2.There are N operators | + | 2.There are N operators <math>Q^I</math>, <math>I=1,\cdots,N</math>, such that |
\begin{eqnarray} | \begin{eqnarray} | ||
Q^I,{Q^I}^\dagger &:&{\it F}^B \rightarrow {\it F}^F ,\\ | Q^I,{Q^I}^\dagger &:&{\it F}^B \rightarrow {\it F}^F ,\\ | ||
20번째 줄: | 20번째 줄: | ||
\left\{ (-1)^F,Q^I\right\}&=&\left\{ (-1)^F,{Q^I}^\dagger\right\}=0 | \left\{ (-1)^F,Q^I\right\}&=&\left\{ (-1)^F,{Q^I}^\dagger\right\}=0 | ||
\end{eqnarray} | \end{eqnarray} | ||
− | + | <math>Q^I</math> are called supersymmetry (SUSY) charges or generators. | |
3.The SUSY generators satisfy the general superalgebra condition: | 3.The SUSY generators satisfy the general superalgebra condition: | ||
27번째 줄: | 27번째 줄: | ||
\left\{ Q^I,{Q^J}\right\}&=&\left\{ Q^I,{Q^J}\right\}=0 | \left\{ Q^I,{Q^J}\right\}&=&\left\{ Q^I,{Q^J}\right\}=0 | ||
\end{eqnarray} | \end{eqnarray} | ||
− | where | + | where <math>I,J=1,\cdots,N</math>. |
A quantum system satisfying the above | A quantum system satisfying the above | ||
34번째 줄: | 34번째 줄: | ||
==expositions== | ==expositions== | ||
+ | * Muhammad Abdul Wasay, Supersymmetric quantum mechanics and topology, http://arxiv.org/abs/1603.07691v1 | ||
* van Loon, Mark. “Path Integral Methods in Index Theorems.” arXiv:1509.03063 [math-Ph, Physics:quant-Ph], September 10, 2015. http://arxiv.org/abs/1509.03063. | * van Loon, Mark. “Path Integral Methods in Index Theorems.” arXiv:1509.03063 [math-Ph, Physics:quant-Ph], September 10, 2015. http://arxiv.org/abs/1509.03063. | ||
* Li, Si. “Supersymmetric Quantum Mechanics and Lefschetz Fixed-Point Formula.” arXiv:hep-th/0511101, November 8, 2005. http://arxiv.org/abs/hep-th/0511101. | * Li, Si. “Supersymmetric Quantum Mechanics and Lefschetz Fixed-Point Formula.” arXiv:hep-th/0511101, November 8, 2005. http://arxiv.org/abs/hep-th/0511101. | ||
* Cooper, Fred, Avinash Khare, and Uday Sukhatme. “Supersymmetry and Quantum Mechanics.” Physics Reports 251, no. 5–6 (January 1995): 267–385. doi:10.1016/0370-1573(94)00080-M. | * Cooper, Fred, Avinash Khare, and Uday Sukhatme. “Supersymmetry and Quantum Mechanics.” Physics Reports 251, no. 5–6 (January 1995): 267–385. doi:10.1016/0370-1573(94)00080-M. | ||
+ | |||
+ | == articles == | ||
+ | |||
+ | * Dana Fine, Stephen Sawin, Path integrals, SUSY QM and the Atiyah-Singer index theorem for twisted Dirac, arXiv:1605.06982 [math-ph], May 23 2016, http://arxiv.org/abs/1605.06982 | ||
+ | [[분류:migrate]] | ||
+ | |||
+ | ==메타데이터== | ||
+ | ===위키데이터=== | ||
+ | * ID : [https://www.wikidata.org/wiki/Q587607 Q587607] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'supersymmetric'}, {'LOWER': 'quantum'}, {'LEMMA': 'mechanic'}] |
2021년 2월 17일 (수) 01:36 기준 최신판
introduction
Consider a quantum mechanical system consisting of a Hilbert (Fock) space \(\it F\) and Hamiltonian \(H\). The system is said to be supersymmetric quantum mechanical (SQM) if
1.\(\it F\) has a decomposition \({\it F}={\it F}^B \oplus {\it F}^F\) and states in \({\it F}^B\) and \({\it F}^F\) are called bosonic and fermionic states respectively. There is an operator \((-1)^F\) such that \begin{eqnarray} &&(-1)^F \Psi =\Psi \ \ if \ \Psi \in {\it F}^B \\ &&(-1)^F \Psi =-\Psi \ \ if \ \Psi \in {\it F}^F \end{eqnarray} \(F\) and \((-1)^F\) are called fermion number operator and chirality operator.
2.There are N operators \(Q^I\), \(I=1,\cdots,N\), such that \begin{eqnarray} Q^I,{Q^I}^\dagger &:&{\it F}^B \rightarrow {\it F}^F ,\\ Q^I,{Q^I}^\dagger &:&{\it F}^F \rightarrow {\it F}^B ,\\ \left\{ (-1)^F,Q^I\right\}&=&\left\{ (-1)^F,{Q^I}^\dagger\right\}=0 \end{eqnarray} \(Q^I\) are called supersymmetry (SUSY) charges or generators.
3.The SUSY generators satisfy the general superalgebra condition: \begin{eqnarray} \left\{ Q^I,{Q^J}^\dagger \right\}&=&2 \delta^{IJ} H\\ \left\{ Q^I,{Q^J}\right\}&=&\left\{ Q^I,{Q^J}\right\}=0 \end{eqnarray} where \(I,J=1,\cdots,N\).
A quantum system satisfying the above conditions is said to have a type N supersymmetry.
expositions
- Muhammad Abdul Wasay, Supersymmetric quantum mechanics and topology, http://arxiv.org/abs/1603.07691v1
- van Loon, Mark. “Path Integral Methods in Index Theorems.” arXiv:1509.03063 [math-Ph, Physics:quant-Ph], September 10, 2015. http://arxiv.org/abs/1509.03063.
- Li, Si. “Supersymmetric Quantum Mechanics and Lefschetz Fixed-Point Formula.” arXiv:hep-th/0511101, November 8, 2005. http://arxiv.org/abs/hep-th/0511101.
- Cooper, Fred, Avinash Khare, and Uday Sukhatme. “Supersymmetry and Quantum Mechanics.” Physics Reports 251, no. 5–6 (January 1995): 267–385. doi:10.1016/0370-1573(94)00080-M.
articles
- Dana Fine, Stephen Sawin, Path integrals, SUSY QM and the Atiyah-Singer index theorem for twisted Dirac, arXiv:1605.06982 [math-ph], May 23 2016, http://arxiv.org/abs/1605.06982
메타데이터
위키데이터
- ID : Q587607
Spacy 패턴 목록
- [{'LOWER': 'supersymmetric'}, {'LOWER': 'quantum'}, {'LEMMA': 'mechanic'}]