"Integer partitions"의 두 판 사이의 차이
 (피타고라스님이 이 페이지의 이름을 integer partitions로 바꾸었습니다.)  | 
				Pythagoras0 (토론 | 기여)   | 
				||
| (사용자 3명의 중간 판 20개는 보이지 않습니다) | |||
| 1번째 줄: | 1번째 줄: | ||
| + | ==background==  | ||
| + | n:=9  | ||
| + | |||
| + | md:=5  | ||
| + | |||
| + | |||
| + | |||
| + | n:=12  | ||
| + | |||
| + | md:=7  | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | n:=6  | ||
| + | |||
| + | md:=11  | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | will be a good choice  | ||
| + | |||
| + | |||
| + | |||
| + | <math>p(5k+4)\equiv 0 \pmod 5</math>  | ||
| + | |||
| + | <math>p(7k+5)\equiv 0 \pmod 7</math>  | ||
| + | |||
| + | <math>p(11k+6)\equiv 0 \pmod {11}</math>  | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | ==partition rank and crank==  | ||
| + | |||
| + | (*define a integer you want to investigate*)n := 6 (*choose the proper moduli for the partition statistics*) md := 2 S[n_] := IntegerPartitions[n] (*define the rank of a partition with the name "pr"*) pr[s_] := Max[s] - Length[s] (*define the crank of a partition with the name "crank"*) Om[s_] := Count[s, 1] Mu[s_] := Length[Select[s, # > Om[s] &]] crank[s_] := If[Om[s] == 0, Max[s], Mu[s] - Om[s]] (*modulus distribution of partition rank*) Sort[Tally[Table[Mod[pr[s], md], {s, S[n]}]]] (*modulus distribution of partition crank*) Sort[Tally[Table[Mod[crank[s], md], {s, S[n]}]]] (*list of paritions with rank& crank*) Do[Print[s, ", rank=", pr[s], "\[Congruent]", Mod[pr[s], md], "(mod ",    md, ")", ", crank=", crank[s], "\[Congruent]", Mod[crank[s], md],   "(mod ", md, ")"], {s, S[n]}] (*you will see the distribution of rank/crank modulus,the partition \ statistics and list of paritions with rank&crank*)  | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | ==number of partitions with odd and even rank==  | ||
| + | |||
| + | * for theoretical background, see [[rank of partition and mock theta conjecture|rank of partition and mock theta function]]  | ||
| + | |||
| + | S[n_] := IntegerPartitions[n] pr[s_] := Max[s] - Length[s] PrOd[n_] := Length[Select[S[n], OddQ[pr[#]] &]] PrEv[n_] := Length[Select[S[n], EvenQ[pr[#]] &]] alpha[n_] := PrEv[n] - PrOd[n] Table[alpha[n], {n, 1, 20}]  | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | *  the generating function is can be shown by Series[(1 + 4 Sum[(-1)^n q^(n (3 n + 1)/2)/(1 + q^n), {n, 1, 10}])/Sum[(-1)^n q^(n (3 n + 1)/2), {n, -8, 8}], {q, 0, 100}]  | ||
| + | |||
| + | |||
| + | |||
| + | ==various partitions==  | ||
| + | |||
| + | (* partitions with at most 5 parts *) IntegerPartitions[7, 5]  | ||
| + | |||
| + |  (* partition into exactly three parts *) VS[n_] := IntegerPartitions[n, {3}] VS[11]  | ||
| + | |||
| + | |||
| + | |||
| + |  (* number of partitions into distinct parts *) PartitionsQ[11]  | ||
| + | |||
| + | |||
| + | |||
| + | (* partition into odd parts *) IntegerPartitions[11, All, {1, 3, 5, 7, 9, 11}]  | ||
| + | [[분류:math and physics]]  | ||
| + | [[분류:migrate]]  | ||
2020년 12월 28일 (월) 04:18 기준 최신판
background
n:=9
md:=5
 
n:=12
md:=7
 
 
n:=6
md:=11
 
 
will be a good choice
 
\(p(5k+4)\equiv 0 \pmod 5\)
\(p(7k+5)\equiv 0 \pmod 7\)
\(p(11k+6)\equiv 0 \pmod {11}\)
 
 
partition rank and crank
(*define a integer you want to investigate*)n := 6 (*choose the proper moduli for the partition statistics*) md := 2 S[n_] := IntegerPartitions[n] (*define the rank of a partition with the name "pr"*) pr[s_] := Max[s] - Length[s] (*define the crank of a partition with the name "crank"*) Om[s_] := Count[s, 1] Mu[s_] := Length[Select[s, # > Om[s] &]] crank[s_] := If[Om[s] == 0, Max[s], Mu[s] - Om[s]] (*modulus distribution of partition rank*) Sort[Tally[Table[Mod[pr[s], md], {s, S[n]}]]] (*modulus distribution of partition crank*) Sort[Tally[Table[Mod[crank[s], md], {s, S[n]}]]] (*list of paritions with rank& crank*) Do[Print[s, ", rank=", pr[s], "\[Congruent]", Mod[pr[s], md], "(mod ", md, ")", ", crank=", crank[s], "\[Congruent]", Mod[crank[s], md], "(mod ", md, ")"], {s, S[n]}] (*you will see the distribution of rank/crank modulus,the partition \ statistics and list of paritions with rank&crank*)
 
 
number of partitions with odd and even rank
- for theoretical background, see rank of partition and mock theta function
 
S[n_] := IntegerPartitions[n] pr[s_] := Max[s] - Length[s] PrOd[n_] := Length[Select[S[n], OddQ[pr[#]] &]] PrEv[n_] := Length[Select[S[n], EvenQ[pr[#]] &]] alpha[n_] := PrEv[n] - PrOd[n] Table[alpha[n], {n, 1, 20}]
 
 
- the generating function is can be shown by Series[(1 + 4 Sum[(-1)^n q^(n (3 n + 1)/2)/(1 + q^n), {n, 1, 10}])/Sum[(-1)^n q^(n (3 n + 1)/2), {n, -8, 8}], {q, 0, 100}]
 
 
various partitions
(* partitions with at most 5 parts *) IntegerPartitions[7, 5]
(* partition into exactly three parts *) VS[n_] := IntegerPartitions[n, {3}] VS[11]
 
(* number of partitions into distinct parts *) PartitionsQ[11]
 
(* partition into odd parts *) IntegerPartitions[11, All, {1, 3, 5, 7, 9, 11}]