"Integer partitions"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
 
(사용자 2명의 중간 판 5개는 보이지 않습니다)
5번째 줄: 5번째 줄:
 
md:=5
 
md:=5
  
 
+
  
 
n:=12
 
n:=12
11번째 줄: 11번째 줄:
 
md:=7
 
md:=7
  
 
+
  
 
+
  
 
n:=6
 
n:=6
19번째 줄: 19번째 줄:
 
md:=11
 
md:=11
  
 
+
  
 
+
  
 
will be a good choice
 
will be a good choice
  
 
+
  
 
<math>p(5k+4)\equiv 0 \pmod 5</math>
 
<math>p(5k+4)\equiv 0 \pmod 5</math>
33번째 줄: 33번째 줄:
 
<math>p(11k+6)\equiv 0 \pmod {11}</math>
 
<math>p(11k+6)\equiv 0 \pmod {11}</math>
  
 
+
  
 
+
  
 
==partition rank and crank==
 
==partition rank and crank==
  
(*define a integer you want to investigate*)n := 6<br> (*choose the proper moduli for the partition statistics*)<br> md := 2<br> S[n_] := IntegerPartitions[n]<br> (*define the rank of a partition with the name "pr"*)<br> pr[s_] := Max[s] - Length[s]<br> (*define the crank of a partition with the name "crank"*)<br> Om[s_] := Count[s, 1]<br> Mu[s_] := Length[Select[s, # > Om[s] &]]<br> crank[s_] := If[Om[s] == 0, Max[s], Mu[s] - Om[s]]<br> (*modulus distribution of partition rank*)<br> Sort[Tally[Table[Mod[pr[s], md], {s, S[n]}]]]<br> (*modulus distribution of partition crank*)<br> Sort[Tally[Table[Mod[crank[s], md], {s, S[n]}]]]<br> (*list of paritions with rank& crank*)<br> Do[Print[s, ", rank=", pr[s], "\[Congruent]", Mod[pr[s], md], "(mod ",<br>    md, ")", ", crank=", crank[s], "\[Congruent]", Mod[crank[s], md],<br>   "(mod ", md, ")"], {s, S[n]}]<br> (*you will see the distribution of rank/crank modulus,the partition \<br> statistics and list of paritions with rank&crank*)
+
(*define a integer you want to investigate*)n := 6 (*choose the proper moduli for the partition statistics*) md := 2 S[n_] := IntegerPartitions[n] (*define the rank of a partition with the name "pr"*) pr[s_] := Max[s] - Length[s] (*define the crank of a partition with the name "crank"*) Om[s_] := Count[s, 1] Mu[s_] := Length[Select[s, # > Om[s] &]] crank[s_] := If[Om[s] == 0, Max[s], Mu[s] - Om[s]] (*modulus distribution of partition rank*) Sort[Tally[Table[Mod[pr[s], md], {s, S[n]}]]] (*modulus distribution of partition crank*) Sort[Tally[Table[Mod[crank[s], md], {s, S[n]}]]] (*list of paritions with rank& crank*) Do[Print[s, ", rank=", pr[s], "\[Congruent]", Mod[pr[s], md], "(mod ",   md, ")", ", crank=", crank[s], "\[Congruent]", Mod[crank[s], md],   "(mod ", md, ")"], {s, S[n]}] (*you will see the distribution of rank/crank modulus,the partition \ statistics and list of paritions with rank&crank*)
  
 
+
  
 
+
  
 
==number of partitions with odd and even rank==
 
==number of partitions with odd and even rank==
49번째 줄: 49번째 줄:
 
* for theoretical background, see [[rank of partition and mock theta conjecture|rank of partition and mock theta function]]
 
* for theoretical background, see [[rank of partition and mock theta conjecture|rank of partition and mock theta function]]
  
S[n_] := IntegerPartitions[n]<br> pr[s_] := Max[s] - Length[s]<br> PrOd[n_] := Length[Select[S[n], OddQ[pr[#]] &]]<br> PrEv[n_] := Length[Select[S[n], EvenQ[pr[#]] &]]<br> alpha[n_] := PrEv[n] - PrOd[n]<br> Table[alpha[n], {n, 1, 20}]
+
S[n_] := IntegerPartitions[n] pr[s_] := Max[s] - Length[s] PrOd[n_] := Length[Select[S[n], OddQ[pr[#]] &]] PrEv[n_] := Length[Select[S[n], EvenQ[pr[#]] &]] alpha[n_] := PrEv[n] - PrOd[n] Table[alpha[n], {n, 1, 20}]
  
 
+
  
 
+
  
*  the generating function is can be shown by<br> Series[(1 + 4 Sum[(-1)^n q^(n (3 n + 1)/2)/(1 + q^n), {n, 1, 10}])/Sum[(-1)^n q^(n (3 n + 1)/2), {n, -8, 8}], {q, 0, 100}]<br>
+
*  the generating function is can be shown by Series[(1 + 4 Sum[(-1)^n q^(n (3 n + 1)/2)/(1 + q^n), {n, 1, 10}])/Sum[(-1)^n q^(n (3 n + 1)/2), {n, -8, 8}], {q, 0, 100}]
  
 
+
  
 
==various partitions==
 
==various partitions==
  
(* partitions with at most 5 parts *)<br> IntegerPartitions[7, 5]
+
(* partitions with at most 5 parts *) IntegerPartitions[7, 5]
  
<br> (* partition into exactly three parts *)<br> VS[n_] := IntegerPartitions[n, {3}]<br> VS[11]
+
(* partition into exactly three parts *) VS[n_] := IntegerPartitions[n, {3}] VS[11]
  
 
+
  
<br> (* number of partitions into distinct parts *)<br> PartitionsQ[11]
+
(* number of partitions into distinct parts *) PartitionsQ[11]
  
 
+
  
(* partition into odd parts *)<br> IntegerPartitions[11, All, {1, 3, 5, 7, 9, 11}]
+
(* partition into odd parts *) IntegerPartitions[11, All, {1, 3, 5, 7, 9, 11}]
 +
[[분류:math and physics]]
 +
[[분류:migrate]]

2020년 12월 28일 (월) 05:18 기준 최신판

background

n:=9

md:=5


n:=12

md:=7



n:=6

md:=11



will be a good choice


\(p(5k+4)\equiv 0 \pmod 5\)

\(p(7k+5)\equiv 0 \pmod 7\)

\(p(11k+6)\equiv 0 \pmod {11}\)



partition rank and crank

(*define a integer you want to investigate*)n := 6 (*choose the proper moduli for the partition statistics*) md := 2 S[n_] := IntegerPartitions[n] (*define the rank of a partition with the name "pr"*) pr[s_] := Max[s] - Length[s] (*define the crank of a partition with the name "crank"*) Om[s_] := Count[s, 1] Mu[s_] := Length[Select[s, # > Om[s] &]] crank[s_] := If[Om[s] == 0, Max[s], Mu[s] - Om[s]] (*modulus distribution of partition rank*) Sort[Tally[Table[Mod[pr[s], md], {s, S[n]}]]] (*modulus distribution of partition crank*) Sort[Tally[Table[Mod[crank[s], md], {s, S[n]}]]] (*list of paritions with rank& crank*) Do[Print[s, ", rank=", pr[s], "\[Congruent]", Mod[pr[s], md], "(mod ", md, ")", ", crank=", crank[s], "\[Congruent]", Mod[crank[s], md], "(mod ", md, ")"], {s, S[n]}] (*you will see the distribution of rank/crank modulus,the partition \ statistics and list of paritions with rank&crank*)



number of partitions with odd and even rank

S[n_] := IntegerPartitions[n] pr[s_] := Max[s] - Length[s] PrOd[n_] := Length[Select[S[n], OddQ[pr[#]] &]] PrEv[n_] := Length[Select[S[n], EvenQ[pr[#]] &]] alpha[n_] := PrEv[n] - PrOd[n] Table[alpha[n], {n, 1, 20}]



  • the generating function is can be shown by Series[(1 + 4 Sum[(-1)^n q^(n (3 n + 1)/2)/(1 + q^n), {n, 1, 10}])/Sum[(-1)^n q^(n (3 n + 1)/2), {n, -8, 8}], {q, 0, 100}]


various partitions

(* partitions with at most 5 parts *) IntegerPartitions[7, 5]

(* partition into exactly three parts *) VS[n_] := IntegerPartitions[n, {3}] VS[11]


(* number of partitions into distinct parts *) PartitionsQ[11]


(* partition into odd parts *) IntegerPartitions[11, All, {1, 3, 5, 7, 9, 11}]