"Path algebras of quivers"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(같은 사용자의 중간 판 2개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
 
* Q quiver
 
* Q quiver
* a path in Q is  a sequence $(i|\alpha_1,\alpha_2,\cdots,\alpha_l|j)$ such that $s(\alpha_i)=t(\alpha_{i-1})$ for all $i = 2, \cdots, l$
+
* a path in Q is  a sequence <math>(i|\alpha_1,\alpha_2,\cdots,\alpha_l|j)</math> such that <math>s(\alpha_i)=t(\alpha_{i-1})</math> for all <math>i = 2, \cdots, l</math>
 
* the path algebra of kQ of Q is the k-algebra with basis the set of all paths in Q with multiplication in the basis given by concatenation of two paths
 
* the path algebra of kQ of Q is the k-algebra with basis the set of all paths in Q with multiplication in the basis given by concatenation of two paths
 
*  path algebra of a quiver
 
*  path algebra of a quiver
12번째 줄: 12번째 줄:
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxVUgxZU5CUWVwdTA/edit?usp=drivesdk
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxVUgxZU5CUWVwdTA/edit?usp=drivesdk
 
[[분류:migrate]]
 
[[분류:migrate]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q493980 Q493980]
 +
===Spacy 패턴 목록===
 +
* [{'LEMMA': 'quiver'}]
 +
* [{'LOWER': 'directed'}, {'LEMMA': 'multigraph'}]

2021년 2월 17일 (수) 01:35 기준 최신판

introduction

  • Q quiver
  • a path in Q is a sequence \((i|\alpha_1,\alpha_2,\cdots,\alpha_l|j)\) such that \(s(\alpha_i)=t(\alpha_{i-1})\) for all \(i = 2, \cdots, l\)
  • the path algebra of kQ of Q is the k-algebra with basis the set of all paths in Q with multiplication in the basis given by concatenation of two paths
  • path algebra of a quiver
    • given a quiver Q, a path p is a sequence of arrows with some conditions
    • path algebra : set of all k-linear combinations of all paths (including e_i's)
    • p_1p_2 will correspond to a composition \(p_2\circ p_1\) of two maps (\(U\overset{P_2}{\rightarrow }V\overset{P_1}{\rightarrow }W\))


computational resource

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LEMMA': 'quiver'}]
  • [{'LOWER': 'directed'}, {'LEMMA': 'multigraph'}]