"Quaternion algebras and quadratic forms"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 3명의 중간 판 17개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5>introduction</h5>
+
==introduction==
 +
* let <math>F</math> be a field
 +
* consider a quaternion algebra defined by <math>F[i,j]/(i^2=a,j^2=b,ij=-ji)</math>
 +
* we denote it as
 +
:<math>\left(\frac{a,b}{F}\right)</math>
 +
* 4 dimensional algebra over <math>F</math> with basis <math>1,i,j,k</math> and multiplication rules <math>i^2=a</math>, <math>j^2=b</math>, <math>ij=-ji=k</math>.
 +
* it is an example of a central simple algebra (see [[Brauer group]])
 +
* it is either a division algebra or isomorphic to the matrix algebra of <math>2\times 2</math> matrices over <math>F</math>: the latter case is termed split
  
 
 
  
classification of quaternion algebras over fields
+
==quaternion algebra as a quadratic space==
 +
* let us consider the algebra <math>A=\left(\frac{a,b}{F}\right)</math>
 +
* we regard it as a quadratic space associated with the quadratic form <math>(1,-a,-b,ab)</math>
  
* division algebra
 
* matrix algebra<br>
 
*  
 
* http://www.maths.tcd.ie/pub/ims/bull57/S5701.pdf
 
* [http://uwspace.uwaterloo.ca/bitstream/10012/3656/1/second2.pdf Quaternion algebras and quadratic forms], Master's thesis, Zi Yang Sham, University of Waterloo
 
  
 
+
==Hilbert symbol==
 +
* In this case the algebra represents an element of order 2 in the [[Brauer group]] of <math>F</math>, which is identified with -1 if it is a division algebra and +1 if it is isomorphic to the algebra of 2 by 2 matrices.
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">related items</h5>
 
  
 
+
==related items==
 +
* [[Steinberg symbol]]
 +
* [[Quadratic forms over p-adic integer rings]]
  
 
+
==expositions==
 
+
* Lewis, David W. 2006. “Quaternion Algebras and the Algebraic Legacy of Hamilton’s Quaternions.” Irish Mathematical Society Bulletin (57): 41–64. http://www.maths.tcd.ie/pub/ims/bull57/S5701.pdf
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">books</h5>
+
* [http://uwspace.uwaterloo.ca/bitstream/10012/3656/1/second2.pdf Quaternion algebras and quadratic forms], Master's thesis, Zi Yang Sham, University of Waterloo
 
+
* http://www.math.virginia.edu/~ww9c/kranec.pdf
* [[2009년 books and articles|찾아볼 수학책]]
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">encyclopedia</h5>
 
 
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* Princeton companion to mathematics(첨부파일로 올릴것)<br>
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">blogs</h5>
 
 
 
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
 
* 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">articles</h5>
 
 
 
* [[2010년 books and articles|논문정리]]
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://pythagoras0.springnote.com/
 
* http://math.berkeley.edu/~reb/papers/index.html
 
 
 
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
 
* http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
 
  
 
+
[[분류:개인노트]]
 +
[[분류:math and physics]]
 +
[[분류:math]]
 +
[[분류:migrate]]
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">TeX </h5>
+
==메타데이터==
 +
===위키데이터===
 +
* ID : [https://www.wikidata.org/wiki/Q2835967 Q2835967]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'quaternion'}, {'LEMMA': 'algebra'}]

2021년 2월 17일 (수) 01:35 기준 최신판

introduction

  • let \(F\) be a field
  • consider a quaternion algebra defined by \(F[i,j]/(i^2=a,j^2=b,ij=-ji)\)
  • we denote it as

\[\left(\frac{a,b}{F}\right)\]

  • 4 dimensional algebra over \(F\) with basis \(1,i,j,k\) and multiplication rules \(i^2=a\), \(j^2=b\), \(ij=-ji=k\).
  • it is an example of a central simple algebra (see Brauer group)
  • it is either a division algebra or isomorphic to the matrix algebra of \(2\times 2\) matrices over \(F\): the latter case is termed split


quaternion algebra as a quadratic space

  • let us consider the algebra \(A=\left(\frac{a,b}{F}\right)\)
  • we regard it as a quadratic space associated with the quadratic form \((1,-a,-b,ab)\)


Hilbert symbol

  • In this case the algebra represents an element of order 2 in the Brauer group of \(F\), which is identified with -1 if it is a division algebra and +1 if it is isomorphic to the algebra of 2 by 2 matrices.


related items

expositions

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'quaternion'}, {'LEMMA': 'algebra'}]