"Jacobi's theta function from a representation theoretic viewpoint"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(다른 사용자 한 명의 중간 판 2개는 보이지 않습니다)
9번째 줄: 9번째 줄:
 
* unitary operator
 
* unitary operator
 
* statement of the Stone-von Neumann theorem
 
* statement of the Stone-von Neumann theorem
* $C\Omega + D$ is invertible and $\Im{\gamma(\Omega)}>0 $
+
* <math>C\Omega + D</math> is invertible and <math>\Im{\gamma(\Omega)}>0 </math>
 
* why consider conjugate linear functionals?  
 
* why consider conjugate linear functionals?  
** a given sesquilinear form $\langle \cdot, \cdot \rangle$ determines an isomorphism of $V$ with the complex conjugate of the dual space
+
** a given sesquilinear form <math>\langle \cdot, \cdot \rangle</math> determines an isomorphism of <math>V</math> with the complex conjugate of the dual space
* equivariant action on $\mathcal{H}_{\infty}$ and $\mathcal{H}_{-\infty}$
+
* equivariant action on <math>\mathcal{H}_{\infty}</math> and <math>\mathcal{H}_{-\infty}</math>
  
 
==overview==
 
==overview==
* $g\in \mathbb{Z}$, $g\geq 1$
+
* <math>g\in \mathbb{Z}</math>, <math>g\geq 1</math>
* $V=(\mathbb{R}^{2g},A)$, where $A$ is the symplectic form $A(x,y)=^tx_1y_2-^tx_2y_1$, $2g$-dimensional symplectic space
+
* <math>V=(\mathbb{R}^{2g},A)</math>, where <math>A</math> is the symplectic form <math>A(x,y)=^tx_1y_2-^tx_2y_1</math>, <math>2g</math>-dimensional symplectic space
* symplectic group, isometry of $V$, $\gamma$ s.t. $A(\gamma x,\gamma y)=A(x,y)$
+
* symplectic group, isometry of <math>V</math>, <math>\gamma</math> s.t. <math>A(\gamma x,\gamma y)=A(x,y)</math>
* $Sp_{2g}(\mathbb{R})=\{M\in \operatorname{GL}_{2g}(\mathbb{R})|M^T J_{n} M = J_{n}\}$ where
+
* <math>Sp_{2g}(\mathbb{R})=\{M\in \operatorname{GL}_{2g}(\mathbb{R})|M^T J_{n} M = J_{n}\}</math> where
$$
+
:<math>
 
J_{n} =\begin{pmatrix}0 & I_n \\-I_n & 0 \\\end{pmatrix}
 
J_{n} =\begin{pmatrix}0 & I_n \\-I_n & 0 \\\end{pmatrix}
$$
+
</math>
* representation of Heisenberg group $H(2g, \mathbb{R})$ on a Hilbert space $\mathcal{H}$
+
* representation of Heisenberg group <math>H(2g, \mathbb{R})</math> on a Hilbert space <math>\mathcal{H}</math>
* Stone-von Neumann theorem -> projective representation of $Sp_{2g}(\mathbb{R})$ on $\mathcal{H}$
+
* Stone-von Neumann theorem -> projective representation of <math>Sp_{2g}(\mathbb{R})</math> on <math>\mathcal{H}</math>
* Weil representation of $Mp(2g,\mathbb{R})$, double cover of the symplectic group
+
* Weil representation of <math>Mp(2g,\mathbb{R})</math>, double cover of the symplectic group
* interpret $\Theta$ as representation theoretic quantity
+
* interpret <math>\Theta</math> as representation theoretic quantity
* transformation properties of theta function follows from the action of $Mp(2g,\mathbb{R})$ and $H(2g,\mathbb{R})$ on $\mathcal{H}$
+
* transformation properties of theta function follows from the action of <math>Mp(2g,\mathbb{R})</math> and <math>H(2g,\mathbb{R})</math> on <math>\mathcal{H}</math>
  
 
==theta functions==
 
==theta functions==
 
===Jacobi theta function===
 
===Jacobi theta function===
* $\theta:\mathbb{C}\times \mathbb{H}\to \mathbb{C}$
+
* <math>\theta:\mathbb{C}\times \mathbb{H}\to \mathbb{C}</math>
$$
+
:<math>
 
\theta (z,\tau)=
 
\theta (z,\tau)=
 
   \sum_{n \in \mathbb{Z}}
 
   \sum_{n \in \mathbb{Z}}
 
   e^{\pi i n^2 \tau} \,
 
   e^{\pi i n^2 \tau} \,
 
   \E^{2 \pi i  n  z},\, \tau\in \mathbb{H},z\in \mathbb{C}
 
   \E^{2 \pi i  n  z},\, \tau\in \mathbb{H},z\in \mathbb{C}
$$
+
</math>
* for $a,b\in \mathbb{Z}$,  
+
* for <math>a,b\in \mathbb{Z}</math>,  
$$\theta (z+a\tau +b,\tau)=\exp(-\pi i a^2 \tau -2\pi i az)\theta(z,\tau)$$
+
:<math>\theta (z+a\tau +b,\tau)=\exp(-\pi i a^2 \tau -2\pi i az)\theta(z,\tau)</math>
* for $\gamma=\left(
+
* for <math>\gamma=\left(
 
\begin{array}{cc}
 
\begin{array}{cc}
 
  a & b \\
 
  a & b \\
 
  c & d \\
 
  c & d \\
 
\end{array}
 
\end{array}
\right)\in SL_2(\mathbb{Z})$ and $ac,bd$ even, we have
+
\right)\in SL_2(\mathbb{Z})</math> and <math>ac,bd</math> even, we have
$$
+
:<math>
 
\theta\left(\frac{z}{c\tau+d},\frac{a\tau+b}{c\tau+d}\right) = \zeta_{\gamma}(c\tau+d)^{1/2}\exp(\frac{\pi i cz^2}{c\tau+d})\theta(z,\tau)
 
\theta\left(\frac{z}{c\tau+d},\frac{a\tau+b}{c\tau+d}\right) = \zeta_{\gamma}(c\tau+d)^{1/2}\exp(\frac{\pi i cz^2}{c\tau+d})\theta(z,\tau)
$$
+
</math>
where $\zeta_\gamma$ is an 8-th root of unity depending in $\gamma$
+
where <math>\zeta_\gamma</math> is an 8-th root of unity depending in <math>\gamma</math>
  
  
 
===Riemann theta function===
 
===Riemann theta function===
* Siegel modular group $\Gamma_g:=\operatorname{Sp}_{2g}(\R)\cap \operatorname{GL}_{2g}(\mathbb{Z})$
+
* Siegel modular group <math>\Gamma_g:=\operatorname{Sp}_{2g}(\R)\cap \operatorname{GL}_{2g}(\mathbb{Z})</math>
* Siegel upper-half space $\mathbb{H}_g=\left\{\Omega \in \operatorname{Mat}_{g \times g}(\mathbb{C}) \ \big| \ \Omega^t=\Omega, \Im \Omega>0 \right\}$
+
* Siegel upper-half space <math>\mathbb{H}_g=\left\{\Omega \in \operatorname{Mat}_{g \times g}(\mathbb{C}) \ \big| \ \Omega^t=\Omega, \Im \Omega>0 \right\}</math>
* $\Gamma_g$ acts on $\mathbb{H}_g$ by
+
* <math>\Gamma_g</math> acts on <math>\mathbb{H}_g</math> by
$$
+
:<math>
 
\Omega\mapsto \gamma(\Omega)=(A\Omega +B)(C\Omega + D)^{-1}
 
\Omega\mapsto \gamma(\Omega)=(A\Omega +B)(C\Omega + D)^{-1}
$$
+
</math>
* Igusa subgroup $\Gamma_{1,2}$, $\gamma=\begin{pmatrix}A & B \\ C & D \\ \end{pmatrix}\in \Gamma_{1,2}$ iff diagonals of $^tAC, ^tBD$ are even
+
* Igusa subgroup <math>\Gamma_{1,2}</math>, <math>\gamma=\begin{pmatrix}A & B \\ C & D \\ \end{pmatrix}\in \Gamma_{1,2}</math> iff diagonals of <math>^tAC, ^tBD</math> are even
* $\Theta:\mathbb{C}^g\times \mathbb{H}_g\to \mathbb{C}$
+
* <math>\Theta:\mathbb{C}^g\times \mathbb{H}_g\to \mathbb{C}</math>
$$
+
:<math>
 
\Theta(\mathbf{z},\Omega):=\sum_{{\mathbf{n}\in{\mathbb Z}^g}}e^{{\pi i ^t\mathbf{n}\cdot\boldsymbol{\Omega}\cdot\mathbf{n}}}e^{{2\pi i\mathbf{n}\cdot\mathbf{z}}}
 
\Theta(\mathbf{z},\Omega):=\sum_{{\mathbf{n}\in{\mathbb Z}^g}}e^{{\pi i ^t\mathbf{n}\cdot\boldsymbol{\Omega}\cdot\mathbf{n}}}e^{{2\pi i\mathbf{n}\cdot\mathbf{z}}}
 
,\, \Omega\in \mathbb{H}_g,\mathbb{z}\in \mathbb{C}^g
 
,\, \Omega\in \mathbb{H}_g,\mathbb{z}\in \mathbb{C}^g
$$
+
</math>
 
* quasi-periodicity
 
* quasi-periodicity
Let $\mathbf{a},\mathbf{b}\in \mathbb{Z}^g,\mathbf{z}\in \mathbb{C}^g,\Omega\in \mathbb{H}_g$. We have
+
Let <math>\mathbf{a},\mathbf{b}\in \mathbb{Z}^g,\mathbf{z}\in \mathbb{C}^g,\Omega\in \mathbb{H}_g</math>. We have
$$
+
:<math>
 
\Theta (\mathbf{z}+\Omega \mathbf{a}+\mathbf{b},\Omega)=\exp(-\pi i\cdot ^t\mathbf{a} \Omega \mathbf{a}-2\pi i ^t\mathbf{a}\mathbf{z})\Theta(\mathbf{z},\Omega)
 
\Theta (\mathbf{z}+\Omega \mathbf{a}+\mathbf{b},\Omega)=\exp(-\pi i\cdot ^t\mathbf{a} \Omega \mathbf{a}-2\pi i ^t\mathbf{a}\mathbf{z})\Theta(\mathbf{z},\Omega)
$$
+
</math>
 
* modularity
 
* modularity
Let $\gamma=\begin{pmatrix}A & B \\ C & D \\ \end{pmatrix}\in \Gamma_{1,2}$. We have
+
Let <math>\gamma=\begin{pmatrix}A & B \\ C & D \\ \end{pmatrix}\in \Gamma_{1,2}</math>. We have
$$
+
:<math>
 
\Theta \left(^t(C\Omega + D)^{-1} \mathbf{z}, (A\Omega+B)(C\Omega + D)^{-1}\right)=\zeta_{\gamma}\det(C\Omega+D)^{1/2}\exp(\pi i\cdot ^t\mathbf{z}(C\Omega+D)^{-1}C\mathbf{z})\Theta(\mathbf{z},\Omega),\,\mathbf{z}\in \mathbb{C}^g,\Omega\in \mathbb{H}_g
 
\Theta \left(^t(C\Omega + D)^{-1} \mathbf{z}, (A\Omega+B)(C\Omega + D)^{-1}\right)=\zeta_{\gamma}\det(C\Omega+D)^{1/2}\exp(\pi i\cdot ^t\mathbf{z}(C\Omega+D)^{-1}C\mathbf{z})\Theta(\mathbf{z},\Omega),\,\mathbf{z}\in \mathbb{C}^g,\Omega\in \mathbb{H}_g
$$
+
</math>
where $\zeta_\gamma$ is an 8-th root of unity depending in $\gamma$
+
where <math>\zeta_\gamma</math> is an 8-th root of unity depending in <math>\gamma</math>
  
 
==Heisenberg group==
 
==Heisenberg group==
* [[Heisenberg group and Heisenberg algebra|Heisenberg group]] $H(2g, \mathbb{R})$ : central extension of $V$ by $S^1=\{z\in \mathbb{C}:|z|=1\}$
+
* [[Heisenberg group and Heisenberg algebra|Heisenberg group]] <math>H(2g, \mathbb{R})</math> : central extension of <math>V</math> by <math>S^1=\{z\in \mathbb{C}:|z|=1\}</math>
* note that $\psi(x,y)=\exp(\pi i A(x,y))$ is a 2-cocycle
+
* note that <math>\psi(x,y)=\exp(\pi i A(x,y)),\,x,y\in V</math> is a 2-cocycle
* Heisenberg group $H(2g, \mathbb{R}):=\{(\lambda,x)|\lambda\in S^1,x\in V\}$ with  
+
* Heisenberg group <math>H(2g, \mathbb{R}):=\{(\lambda,x)|\lambda\in S^1,x\in V\}</math> with  
$$
+
:<math>
 
(\lambda,x)\cdot (\mu, y):=(\lambda \mu \psi(x,y),x+y)
 
(\lambda,x)\cdot (\mu, y):=(\lambda \mu \psi(x,y),x+y)
$$
+
</math>
 
: <math> 1 \rightarrow S^1~\rightarrow~H(2g, \mathbb{R})~\rightarrow~V \rightarrow 0</math>
 
: <math> 1 \rightarrow S^1~\rightarrow~H(2g, \mathbb{R})~\rightarrow~V \rightarrow 0</math>
 +
* central extension of <math>V</math> by <math>S^1</math>
 
;thm (Stone-von Neumann)
 
;thm (Stone-von Neumann)
 
There exists a unique irreducible unitary representation
 
There exists a unique irreducible unitary representation
$$
+
:<math>
 
U:H(2g,\mathbb{R})\to Aut(\mathcal{H})
 
U:H(2g,\mathbb{R})\to Aut(\mathcal{H})
$$
+
</math>
such that $U_{\lambda}=\lambda \operatorname{id}_{\mathcal{H}}$ for all $\lambda \in S^1$. In other words, if there are two representations $U^{(1)}$ and $U^{(2)}$ on $\mathcal{H}_1$ and $\mathcal{H}_2$, then there exists an isomorphism $A: \mathcal{H}_1 \to \mathcal{H}_2$ such that  
+
such that <math>U_{\lambda}=\lambda \operatorname{id}_{\mathcal{H}}</math> for all <math>\lambda \in S^1</math>. In other words, if there are two such representations <math>U^{(1)}</math> and <math>U^{(2)}</math> on <math>\mathcal{H}_1</math> and <math>\mathcal{H}_2</math>, then there exists an isomorphism <math>A: \mathcal{H}_1 \to \mathcal{H}_2</math> such that  
$$
+
:<math>
 
A\circ U^{(1)}\circ A^{-1}=U^{(2)} \\
 
A\circ U^{(1)}\circ A^{-1}=U^{(2)} \\
 
\begin{array}{ccc}  \mathcal{H}_1  & \overset{A}{\longrightarrow } &  \mathcal{H}_2  \\  \downarrow U^{(1)} & \text{} & \downarrow U^{(2)} \\  \mathcal{H}_1  & \overset{A}{\longrightarrow } &  \mathcal{H}_2  \end{array}
 
\begin{array}{ccc}  \mathcal{H}_1  & \overset{A}{\longrightarrow } &  \mathcal{H}_2  \\  \downarrow U^{(1)} & \text{} & \downarrow U^{(2)} \\  \mathcal{H}_1  & \overset{A}{\longrightarrow } &  \mathcal{H}_2  \end{array}
$$
+
</math>
 +
* <math>A</math> is an intertwinter between <math>U^{(1)}</math> and <math>U^{(2)}</math>
 
* related to the equivalence of matrix mechanics and wave mechanics in the early days of quantum mechanics
 
* related to the equivalence of matrix mechanics and wave mechanics in the early days of quantum mechanics
  
 
===realization===
 
===realization===
* let $\mathcal{H}:=L^2(\mathbb{R}^g)$
+
* let <math>\mathcal{H}_1:=L^2(\mathbb{R}^g)</math>
* for $(\lambda,y_1,y_2)\in H(2g, \mathbb{R})$, $x_1\in \mathbb{R}^g$ and $\varphi\in \mathcal{H}$, define
+
* for <math>(\lambda,y_1,y_2)\in H(2g, \mathbb{R})</math>, <math>x_1\in \mathbb{R}^g</math> and <math>\varphi\in \mathcal{H}</math>, define
$$
+
:<math>
 
U_{(\lambda,y_1,y_2)}\varphi(x_1):=\lambda \exp(2\pi i (^tx_1y_2+^ty_1y_2/2))\varphi(x_1+y_1)
 
U_{(\lambda,y_1,y_2)}\varphi(x_1):=\lambda \exp(2\pi i (^tx_1y_2+^ty_1y_2/2))\varphi(x_1+y_1)
$$
+
</math>
* called the Schrodinger representation of $H(2g, \mathbb{R})$
+
* called the Schrodinger representation of <math>H(2g, \mathbb{R})</math>
  
 
===Heisenberg algebra===
 
===Heisenberg algebra===
* the Lie algebra $\mathfrak{h}(2g,\mathbb{R})$ of $H(2g,\mathbb{R})$ has a basis : $A_1,\cdots,A_g, B_1,\cdots,B_g,C$ with  
+
* the Lie algebra <math>\mathfrak{h}(2g,\mathbb{R})</math> of <math>H(2g,\mathbb{R})</math> has a basis : <math>A_1,\cdots,A_g, B_1,\cdots,B_g,C</math> with  
$$
+
:<math>
 
[A_i, B_j] = \delta_{ij}C, [A_i, C] =[B_j, C] = 0
 
[A_i, B_j] = \delta_{ij}C, [A_i, C] =[B_j, C] = 0
$$
+
</math>
* want to get a reprsentation $\delta U$ of $\mathfrak{h}(2g,\mathbb{R})$ on a certain dense set $\mathcal{H}_{\infty}$ of $\mathcal{H}$
+
* want to get a reprsentation <math>\delta U</math> of <math>\mathfrak{h}(2g,\mathbb{R})</math> on a certain dense subspace <math>\mathcal{H}_{\infty}</math> of <math>\mathcal{H}_1</math>
* for $X\in \mathfrak{h}(2g,\mathbb{R})$, let
+
* for <math>X\in \mathfrak{h}(2g,\mathbb{R})</math>, let
$$
+
:<math>
 
\delta U_{X}f:=\lim_{t\to 0}\frac{(U_{\exp_H(tX)}f)-f}{t}
 
\delta U_{X}f:=\lim_{t\to 0}\frac{(U_{\exp_H(tX)}f)-f}{t}
$$
+
</math>
* $A_i$ acts as $\frac{\partial f}{\partial x_i}$
+
* on <math>\mathcal{H}_1</math>
* $B_i$ acts as $2\pi i x_i f(x)$
+
* <math>A_i</math> acts as <math>\frac{\partial f}{\partial x_i}</math>
* $C$ acts as $2\pi i f(x)$
+
* <math>B_i</math> acts as <math>2\pi i x_i f(x)</math>
 +
* <math>C</math> acts as <math>2\pi i f(x)</math>
  
 
===theta as matrix coefficients===
 
===theta as matrix coefficients===
* $\mathcal{H}_{\infty}$, Schwartz space
+
* <math>\mathcal{H}_{\infty}</math>, Schwartz space
* $\mathcal{H}_{-\infty}$, the space of conjugate linear continuous maps from $\mathcal{H}_{\infty}$ to $\mathbb{C}$
+
* <math>\mathcal{H}_{-\infty}</math>, the space of conjugate linear continuous maps from <math>\mathcal{H}_{\infty}</math> to <math>\mathbb{C}</math>
* let $W_{\Omega}:=\langle \delta U_{A_i}-\sum_{j}\Omega_{ij} \delta U_{B_j},\, i=1,\cdots, g\rangle$, subalgebra of $\mathfrak{h}(2g,\mathbb{R})\otimes \mathbb{C}$
+
* let <math>W_{\Omega}:=\langle \delta U_{A_i}-\sum_{j}\Omega_{ij} \delta U_{B_j},\, i=1,\cdots, g\rangle</math>, subalgebra of <math>\mathfrak{h}(2g,\mathbb{R})\otimes \mathbb{C}</math>
 
;prop
 
;prop
There is a unique $f_{\Omega}\in \mathcal{H}_{\infty}$, unique up to scalars, such that $\delta U_{X} f_{\Omega}=0, \forall X\in W_{\Omega}$
+
There is a unique <math>f_{\Omega}\in \mathcal{H}_{\infty}</math>, unique up to scalars, such that <math>\delta U_{X} f_{\Omega}=0, \forall X\in W_{\Omega}</math>
* Let $L=\mathbb{Z}^{2g}$ and $\sigma:L\to H(2g, \mathbb{R})$ defined by
+
* Let <math>\sigma:\mathbb{Z}^{2g}\to H(2g, \mathbb{R})</math> defined by
$$
+
:<math>
\sigma(n):=((-1)^{^tn_1n_2},n),\, n\in L
+
\sigma(n):=((-1)^{^tn_1n_2},n),\, n\in \mathbb{Z}^{2g}
$$
+
</math>
 
;prop  
 
;prop  
There is a unique $\mu_{\mathbb{Z}}\in \mathcal{H}_{-\infty}$, unique up to scalars, which is invariant under $U_x,\, x\in \sigma(L)$
+
There is a unique <math>\mu_{\mathbb{Z}}\in \mathcal{H}_{-\infty}</math>, unique up to scalars, which is invariant under <math>U_x,\, x\in \sigma(L)</math>
* we get a function on $H(2g,\mathbb{R})$ as a matrix coefficient
+
* we get a function on <math>H(2g,\mathbb{R})</math> as a matrix coefficient
$$
+
:<math>
 
h\to \langle U_hf_{\Omega},\mu_{\mathbb{Z}} \rangle :=\overline{\mu_{\mathbb{Z}}(U_hf_{\Omega})},\,h\in H(2g,\mathbb{R})
 
h\to \langle U_hf_{\Omega},\mu_{\mathbb{Z}} \rangle :=\overline{\mu_{\mathbb{Z}}(U_hf_{\Omega})},\,h\in H(2g,\mathbb{R})
$$
+
</math>
 
;thm
 
;thm
Let $\Omega\in \mathbb{H}_g$ be fixed. Let $\mathcal{H}$ be a representation of $H(2g,\mathbb{R})$ and $f_{\Omega},\mu_{\mathbb{Z}}$ as above. For $x\in V=\mathbb{R}^{2g}$,
+
Let <math>\Omega\in \mathbb{H}_g</math> be fixed. Let <math>\mathcal{H}</math> be a representation of <math>H(2g,\mathbb{R})</math> and <math>f_{\Omega},\mu_{\mathbb{Z}}</math> as above. For <math>x\in V=\mathbb{R}^{2g}</math>,
$$
+
:<math>
 
\langle U_{(1,x)}f_{\Omega}, \mu_{\mathbb{Z}}\rangle=c\exp(\pi i ^tx_1 \underline{\mathbf{x}})\Theta(\underline{\mathbf{x}},\Omega)
 
\langle U_{(1,x)}f_{\Omega}, \mu_{\mathbb{Z}}\rangle=c\exp(\pi i ^tx_1 \underline{\mathbf{x}})\Theta(\underline{\mathbf{x}},\Omega)
$$
+
</math>
for some $c\in \mathbb{C}^{\times}$
+
for some <math>c\in \mathbb{C}^{\times}</math>
  
 
===quasi-periodicity===
 
===quasi-periodicity===
* for $n=(n_1,n_2)\in \mathbb{Z}^{2g}$,
+
* for <math>n=(n_1,n_2)\in \mathbb{Z}^{g}\times \mathbb{Z}^{g}\mathbb{Z}^{2g}</math>,
$$
+
:<math>
 
\begin{aligned}
 
\begin{aligned}
 
\exp(\pi i ^tx_1 \underline{\mathbf{x}})\Theta(\underline{\mathbf{x}},\Omega)&=\langle U_{(1,x)}f_{\Omega}, \mu_{\mathbb{Z}}\rangle \\
 
\exp(\pi i ^tx_1 \underline{\mathbf{x}})\Theta(\underline{\mathbf{x}},\Omega)&=\langle U_{(1,x)}f_{\Omega}, \mu_{\mathbb{Z}}\rangle \\
150번째 줄: 153번째 줄:
 
&=(-1)^{^tn_1n_2}\psi(n,x)\exp(\pi i ^t(x_1+n_1)(\underline{\mathbf{x+n}}))\Theta(\underline{\mathbf{x+n}},\Omega)
 
&=(-1)^{^tn_1n_2}\psi(n,x)\exp(\pi i ^t(x_1+n_1)(\underline{\mathbf{x+n}}))\Theta(\underline{\mathbf{x+n}},\Omega)
 
\end{aligned}
 
\end{aligned}
$$
+
</math>
  
 
==metaplectic group==  
 
==metaplectic group==  
 
===covering of the symplectic group===
 
===covering of the symplectic group===
* let $\gamma\in Sp_{2g}(\mathbb{R})$. As it preserves $A$, it induces an automorphism of $H(2g,\mathbb{R})$ by
+
* let <math>\gamma\in Sp_{2g}(\mathbb{R})</math>. As it preserves <math>A</math>, it induces an automorphism of <math>H(2g,\mathbb{R})</math> by
$$
+
:<math>
 
(\lambda,x)\mapsto (\lambda, \gamma x)
 
(\lambda,x)\mapsto (\lambda, \gamma x)
$$
+
</math>
* define a new representation $U'$ of $H(2g,\mathbb{R})$ on $\mathcal{H}$ by
+
* define a new representation <math>U'</math> of <math>H(2g,\mathbb{R})</math> on <math>\mathcal{H}</math> by
$$
+
:<math>
 
U'_{(\lambda,x)}f:=U_{(\lambda,\gamma x)}f
 
U'_{(\lambda,x)}f:=U_{(\lambda,\gamma x)}f
$$
+
</math>
* by the Stone-von Neumann theorem, there exists a unitary map $A_{\gamma}:\mathcal{H}\to \mathcal{H}$ intertwining $U$ and $U'$
+
* by the Stone-von Neumann theorem, there exists a unitary map <math>A_{\gamma}:\mathcal{H}\to \mathcal{H}</math> intertwining <math>U</math> and <math>U'</math>
* let $U(\mathcal{H})$ be the group of unitary isomorphisms of $\mathcal{H}$ and define
+
* let <math>U(\mathcal{H})</math> be the group of unitary isomorphisms of <math>\mathcal{H}</math> and define
$$
+
:<math>
 
\widetilde{Mp}(2g,\mathbb{R}):=\{A\in U(\mathcal{H}) : A=A_{\gamma} \text{for some } \gamma \in Sp_{2g}(\mathbb{R})\}
 
\widetilde{Mp}(2g,\mathbb{R}):=\{A\in U(\mathcal{H}) : A=A_{\gamma} \text{for some } \gamma \in Sp_{2g}(\mathbb{R})\}
$$
+
</math>
* then for $A\in \widetilde{Mp}(2g,\mathbb{R})$, there exists $\gamma \in Sp_{2g}(\mathbb{R})$ such that
+
* then for <math>A\in \widetilde{Mp}(2g,\mathbb{R})</math>, there exists <math>\gamma \in Sp_{2g}(\mathbb{R})</math> such that
$$
+
:<math>
 
AU_{(\lambda,x)}A^{-1}=U_{(\lambda,\gamma x)} \label{star}
 
AU_{(\lambda,x)}A^{-1}=U_{(\lambda,\gamma x)} \label{star}
$$
+
</math>
 
;lemma
 
;lemma
Given $A\in \widetilde{Mp}(2g,\mathbb{R})$, there exists unique $\gamma \in Sp_{2g}(\mathbb{R})$ such that $A=A_{\gamma}$.
+
Given <math>A\in \widetilde{Mp}(2g,\mathbb{R})</math>, there exists unique <math>\gamma \in Sp_{2g}(\mathbb{R})</math> such that <math>A=A_{\gamma}</math>.
 
* we get an exact sequence
 
* we get an exact sequence
 
: <math> 1 \rightarrow S^1~\rightarrow~\widetilde{Mp}(2g,\mathbb{R})~\overset{\rho}{\rightarrow}~Sp(2g,\mathbb{R}) \rightarrow 1</math>
 
: <math> 1 \rightarrow S^1~\rightarrow~\widetilde{Mp}(2g,\mathbb{R})~\overset{\rho}{\rightarrow}~Sp(2g,\mathbb{R}) \rightarrow 1</math>
* Let $\gamma\in Sp(2g,\mathbb{R})$ and $P\in \widetilde{Mp}(2g,\mathbb{R})$ such that $\rho(P)=\gamma$. Then
+
* Let <math>\gamma\in Sp(2g,\mathbb{R})</math> and <math>P\in \widetilde{Mp}(2g,\mathbb{R})</math> such that <math>\rho(P)=\gamma</math>. Then
$$
+
:<math>
 
\begin{aligned}
 
\begin{aligned}
 
\exp(\pi i ^tx_1 \underline{\mathbf{x}})\Theta(\underline{\mathbf{x}},\Omega)&=\langle PU_{(1,x)}f_{\Omega}, P\mu_{\mathbb{Z}}\rangle\\
 
\exp(\pi i ^tx_1 \underline{\mathbf{x}})\Theta(\underline{\mathbf{x}},\Omega)&=\langle PU_{(1,x)}f_{\Omega}, P\mu_{\mathbb{Z}}\rangle\\
 
&=\langle U_{(1,\gamma x)}P f_{\Omega}, P\mu_{\mathbb{Z}}\rangle
 
&=\langle U_{(1,\gamma x)}P f_{\Omega}, P\mu_{\mathbb{Z}}\rangle
 
\end{aligned}
 
\end{aligned}
$$
+
</math>
 
where the second equality follows from \ref{star}
 
where the second equality follows from \ref{star}
* once we compute $P f_{\Omega}, P\mu_{\mathbb{Z}}$, the functional equation of $\Theta$ will fall out
+
* once we compute <math>P f_{\Omega}, P\mu_{\mathbb{Z}}</math>, the functional equation of <math>\Theta</math> will fall out
  
===computing $P f_{\Omega}$===
+
===computing <math>P f_{\Omega}</math>===
 
;thm
 
;thm
Let $P\in \widetilde{Mp}(2g,\mathbb{R})$, $\rho(P)=\gamma$. We choose $f_{\Omega}(x)=\exp(\pi i ^tx \Omega x)$ for $\Omega\in \mathbb{H}_{g}$. Then
+
Let <math>P\in \widetilde{Mp}(2g,\mathbb{R})</math>, <math>\rho(P)=\gamma</math>. We choose <math>f_{\Omega}(x)=\exp(\pi i ^tx \Omega x)</math> for <math>\Omega\in \mathbb{H}_{g}</math>. Then
$$
+
:<math>
 
Pf_{\Omega}=C(P,\Omega)f_{\gamma*\Omega},
 
Pf_{\Omega}=C(P,\Omega)f_{\gamma*\Omega},
$$
+
</math>
where $C(P,\Omega)$ is, up to a scalar of absoulte value one, a branch of $\det(-B\Omega+A)^{-1/2}$ on $\mathbb{H}_{g}$
+
where <math>C(P,\Omega)</math> is, up to a scalar of absoulte value one, a branch of <math>\det(-B\Omega+A)^{-1/2}</math> on <math>\mathbb{H}_{g}</math>
* $\chi: \widetilde{Mp}(2g,\mathbb{R})\to S^1$, $\chi(P):=\det(-B\Omega+A)C(P,\Omega)^2$ is a character
+
* <math>\chi: \widetilde{Mp}(2g,\mathbb{R})\to S^1</math>, <math>\chi(P):=\det(-B\Omega+A)C(P,\Omega)^2</math> is a character
* $\operatorname{ker}(\chi)=Mp(2g,\mathbb{R})$ central ext of $Sp_{2g}(\mathbb{R})$ by $\{\pm 1\}$
+
* <math>\operatorname{ker}(\chi)=Mp(2g,\mathbb{R})</math> central ext of <math>Sp_{2g}(\mathbb{R})</math> by <math>\{\pm 1\}</math>
  
===computing $P\mu_{\mathbb{Z}}$===
+
===computing <math>P\mu_{\mathbb{Z}}</math>===
* Recall that $\mu_{\mathbb{Z}}\in \mathcal{H}_{-\infty}$ is killed by $U_x-1$ for any $x\in \sigma(\mathbb{Z}^{2g})$.
+
* Recall that <math>\mu_{\mathbb{Z}}\in \mathcal{H}_{-\infty}</math> is killed by <math>U_x-1</math> for any <math>x\in \sigma(\mathbb{Z}^{2g})</math>.
* for $\tilde{\gamma}\in Mp(2g,\mathbb{R})$ with $\rho(\tilde{\gamma})=\gamma\in \Gamma_{1,2}$, $\tilde{\gamma}\mu_{\mathbb{Z}}$ is killed by $U_{T_{\gamma}x}-1$ for $x\in \sigma(\mathbb{Z}^{2g})$.
+
* for <math>\tilde{\gamma}\in Mp(2g,\mathbb{R})</math> with <math>\rho(\tilde{\gamma})=\gamma\in \Gamma_{1,2}</math>, <math>\tilde{\gamma}\mu_{\mathbb{Z}}</math> is killed by <math>U_{T_{\gamma}x}-1</math> for <math>x\in \sigma(\mathbb{Z}^{2g})</math>.
* from the uniqueness of $\mu_{\mathbb{Z}}$, we get
+
* from the uniqueness of <math>\mu_{\mathbb{Z}}</math>, we get
$$
+
:<math>
 
\tilde{\gamma}\mu_{\mathbb{Z}}=\eta(\tilde{\gamma})\mu_{\mathbb{Z}}
 
\tilde{\gamma}\mu_{\mathbb{Z}}=\eta(\tilde{\gamma})\mu_{\mathbb{Z}}
$$
+
</math>
where $\eta(\tilde{\gamma})\in \mathbb{C}^{\times}$.  
+
where <math>\eta(\tilde{\gamma})\in \mathbb{C}^{\times}</math>.  
* $\eta:\rho^{-1}(\Gamma_{1,2})\cap Mp(2g,\mathbb{R})\to \mathbb{C}^{\times}$ is a character
+
* <math>\eta:\rho^{-1}(\Gamma_{1,2})\cap Mp(2g,\mathbb{R})\to \mathbb{C}^{\times}</math> is a character
 
;lemma
 
;lemma
# $\eta$ surjects on the 8-th root of unity
+
# <math>\eta</math> surjects on the 8-th root of unity
# Consider $\eta^2$ as a character on $\Gamma_{1,2}$. If $\operatorname{ker} \eta^2=\Delta$, then $\Delta$ contains $\Gamma_4=\{\gamma\in Sp_{2g}(\mathbb{Z}):\gamma=I_g \mod 4\}$
+
# Consider <math>\eta^2</math> as a character on <math>\Gamma_{1,2}</math>. If <math>\operatorname{ker} \eta^2=\Delta</math>, then <math>\Delta</math> contains <math>\Gamma_4=\{\gamma\in Sp_{2g}(\mathbb{Z}):\gamma=I_g \mod 4\}</math>
  
 
===functional equation===
 
===functional equation===
* for $x \in \mathbb{R}^{2g}$ and $\Omega\in \mathbb{H}_g$, let
+
* for <math>x \in \mathbb{R}^{2g}</math> and <math>\Omega\in \mathbb{H}_g</math>, let
$$
+
:<math>
 
\Theta[x](\Omega):=\exp(\pi i ^tx_1 \underline{\mathbf{x}})\Theta(\underline{\mathbf{x}},\Omega)
 
\Theta[x](\Omega):=\exp(\pi i ^tx_1 \underline{\mathbf{x}})\Theta(\underline{\mathbf{x}},\Omega)
$$
+
</math>
 
;thm
 
;thm
For $\mathbb{x}\in \mathbb{R}^{2g}, \Omega\in \mathbb{H}_g$ and $\tilde{\gamma}\in Mp(2g,\mathbb{R})$ with $\rho(\tilde{\gamma})=\gamma=\begin{pmatrix}A & B \\ C & D \\ \end{pmatrix}\in \Gamma_{1,2}$, we have
+
For <math>\mathbb{x}\in \mathbb{R}^{2g}, \Omega\in \mathbb{H}_g</math> and <math>\tilde{\gamma}\in Mp(2g,\mathbb{R})</math> with <math>\rho(\tilde{\gamma})=\gamma=\begin{pmatrix}A & B \\ C & D \\ \end{pmatrix}\in \Gamma_{1,2}</math>, we have
$$
+
:<math>
 
\Theta[x](\Omega)=\overline{\eta(\tilde{\gamma})} \det(-B\Omega+A)^{1/2}\Theta[\gamma x]\left((D\Omega-C)(-B\Omega+A)^{-1}\right)
 
\Theta[x](\Omega)=\overline{\eta(\tilde{\gamma})} \det(-B\Omega+A)^{1/2}\Theta[\gamma x]\left((D\Omega-C)(-B\Omega+A)^{-1}\right)
$$
+
</math>
  
 
==memo==
 
==memo==
* $\gamma=\begin{pmatrix}A & B \\ C & D \\\end{pmatrix}\in \Gamma_g$
+
* <math>\gamma=\begin{pmatrix}A & B \\ C & D \\\end{pmatrix}\in \Gamma_g</math>
$$
+
:<math>
 
\begin{align}
 
\begin{align}
 
^tAC=^tCA \\
 
^tAC=^tCA \\
227번째 줄: 230번째 줄:
 
^tAD-^tCB= I_g
 
^tAD-^tCB= I_g
 
\end{align}
 
\end{align}
$$
+
</math>
* Igusa subgroup $\Gamma_{1,2}:=\{\gamma\in \Gamma_g|Q(\gamma \mathbf{x})=Q(\mathbf{x}) \pmod 2\}$, where $\mathbf{x}=(\mathbf{x_1},\mathbf{x_2})\in \mathbb{Z}^g\times \mathbb{Z}^g=\mathbb{Z}^{2g}$, $Q(\mathbf{x})=^t\mathbf{x_1} \mathbf{x_2}$
+
* Igusa subgroup <math>\Gamma_{1,2}:=\{\gamma\in \Gamma_g|Q(\gamma \mathbf{x})=Q(\mathbf{x}) \pmod 2\}</math>, where <math>\mathbf{x}=(\mathbf{x_1},\mathbf{x_2})\in \mathbb{Z}^g\times \mathbb{Z}^g=\mathbb{Z}^{2g}</math>, <math>Q(\mathbf{x})=^t\mathbf{x_1} \mathbf{x_2}</math>
* for $\Omega\in \mathbb{H}_g$, define a lattice $\Lambda_{\Omega}=\mathbb{Z}^g+\Omega \mathbb{Z}^g\subset \mathbb{C}^g$
+
* for <math>\Omega\in \mathbb{H}_g</math>, define a lattice <math>\Lambda_{\Omega}=\mathbb{Z}^g+\Omega \mathbb{Z}^g\subset \mathbb{C}^g</math>
* a smooth vector $f_{\Omega}\in \mathcal{H}_{\infty}$, (Schwartz space, rapidly decreasing smooth function)
+
* a smooth vector <math>f_{\Omega}\in \mathcal{H}_{\infty}</math>, (Schwartz space, rapidly decreasing smooth function)
* a functional $\mu_{\mathbb{Z}}\in \mathcal{H}_{-\infty}$, where $\mathcal{H}_{-\infty}$ is the space '''conjugate''' linear continuous maps from $\mathcal{H}_{\infty}$ to $\mathbb{C}$
+
* a functional <math>\mu_{\mathbb{Z}}\in \mathcal{H}_{-\infty}</math>, where <math>\mathcal{H}_{-\infty}</math> is the space '''conjugate''' linear continuous maps from <math>\mathcal{H}_{\infty}</math> to <math>\mathbb{C}</math>
* let $\mathbf{x}=(x_1,x_2)$ and $\underline{\mathbf{x}}=\Omega x_1+x_2$
+
* let <math>\mathbf{x}=(x_1,x_2)</math> and <math>\underline{\mathbf{x}}=\Omega x_1+x_2</math>
* $\Theta(\underline{\mathbf{x}},\Omega)$ appears as pairing
+
* <math>\Theta(\underline{\mathbf{x}},\Omega)</math> appears as pairing
$$
+
:<math>
 
\langle U_{(1,x)}f_{\Omega}, \mu_{\mathbb{Z}}\rangle=c\exp(\pi i ^tx_1 \underline{\mathbf{x}})\Theta(\underline{\mathbf{x}},\Omega)
 
\langle U_{(1,x)}f_{\Omega}, \mu_{\mathbb{Z}}\rangle=c\exp(\pi i ^tx_1 \underline{\mathbf{x}})\Theta(\underline{\mathbf{x}},\Omega)
$$
+
</math>
* $A_i=p_i,B_i=x_i$ in usual notation for Heisenberg algebra
+
* <math>A_i=p_i,B_i=x_i</math> in usual notation for Heisenberg algebra
* $[X,P] = X P - P X = i \hbar$
+
* <math>[X,P] = X P - P X = i \hbar</math>
  
 
==related items==
 
==related items==
251번째 줄: 254번째 줄:
 
[[분류:Lie theory]]
 
[[분류:Lie theory]]
 
[[분류:Talks and lecture notes]]
 
[[분류:Talks and lecture notes]]
 +
[[분류:migrate]]

2020년 11월 16일 (월) 05:31 기준 최신판

abstract

  • title: Jacobi's theta function from a representation theoretic viewpoint
  • Jacobi introduced his theta functions to develop the theory of elliptic functions. Weil's approach to theta functions opened up the way to study them from a representation theoretic point of view. This involves the Heisenberg group, the Stone-von Neumann theorem and the Weil representation of the metaplectic group. I will give an introduction to this topic focusing on the classical transformation properties of theta functions.
  • Mumford, David, M. Nori, and P. Norman. Tata Lectures on Theta III. Boston: Birkhäuser, 2006.

questions

  • semi-direct product and 2-cocycle
  • Hilbert space
  • unitary operator
  • statement of the Stone-von Neumann theorem
  • \(C\Omega + D\) is invertible and \(\Im{\gamma(\Omega)}>0 \)
  • why consider conjugate linear functionals?
    • a given sesquilinear form \(\langle \cdot, \cdot \rangle\) determines an isomorphism of \(V\) with the complex conjugate of the dual space
  • equivariant action on \(\mathcal{H}_{\infty}\) and \(\mathcal{H}_{-\infty}\)

overview

  • \(g\in \mathbb{Z}\), \(g\geq 1\)
  • \(V=(\mathbb{R}^{2g},A)\), where \(A\) is the symplectic form \(A(x,y)=^tx_1y_2-^tx_2y_1\), \(2g\)-dimensional symplectic space
  • symplectic group, isometry of \(V\), \(\gamma\) s.t. \(A(\gamma x,\gamma y)=A(x,y)\)
  • \(Sp_{2g}(\mathbb{R})=\{M\in \operatorname{GL}_{2g}(\mathbb{R})|M^T J_{n} M = J_{n}\}\) where

\[ J_{n} =\begin{pmatrix}0 & I_n \\-I_n & 0 \\\end{pmatrix} \]

  • representation of Heisenberg group \(H(2g, \mathbb{R})\) on a Hilbert space \(\mathcal{H}\)
  • Stone-von Neumann theorem -> projective representation of \(Sp_{2g}(\mathbb{R})\) on \(\mathcal{H}\)
  • Weil representation of \(Mp(2g,\mathbb{R})\), double cover of the symplectic group
  • interpret \(\Theta\) as representation theoretic quantity
  • transformation properties of theta function follows from the action of \(Mp(2g,\mathbb{R})\) and \(H(2g,\mathbb{R})\) on \(\mathcal{H}\)

theta functions

Jacobi theta function

  • \(\theta:\mathbb{C}\times \mathbb{H}\to \mathbb{C}\)

\[ \theta (z,\tau)= \sum_{n \in \mathbb{Z}} e^{\pi i n^2 \tau} \, \E^{2 \pi i n z},\, \tau\in \mathbb{H},z\in \mathbb{C} \]

  • for \(a,b\in \mathbb{Z}\),

\[\theta (z+a\tau +b,\tau)=\exp(-\pi i a^2 \tau -2\pi i az)\theta(z,\tau)\]

  • for \(\gamma=\left( \begin{array}{cc} a & b \\ c & d \\ \end{array} \right)\in SL_2(\mathbb{Z})\) and \(ac,bd\) even, we have

\[ \theta\left(\frac{z}{c\tau+d},\frac{a\tau+b}{c\tau+d}\right) = \zeta_{\gamma}(c\tau+d)^{1/2}\exp(\frac{\pi i cz^2}{c\tau+d})\theta(z,\tau) \] where \(\zeta_\gamma\) is an 8-th root of unity depending in \(\gamma\)


Riemann theta function

  • Siegel modular group \(\Gamma_g:=\operatorname{Sp}_{2g}(\R)\cap \operatorname{GL}_{2g}(\mathbb{Z})\)
  • Siegel upper-half space \(\mathbb{H}_g=\left\{\Omega \in \operatorname{Mat}_{g \times g}(\mathbb{C}) \ \big| \ \Omega^t=\Omega, \Im \Omega>0 \right\}\)
  • \(\Gamma_g\) acts on \(\mathbb{H}_g\) by

\[ \Omega\mapsto \gamma(\Omega)=(A\Omega +B)(C\Omega + D)^{-1} \]

  • Igusa subgroup \(\Gamma_{1,2}\), \(\gamma=\begin{pmatrix}A & B \\ C & D \\ \end{pmatrix}\in \Gamma_{1,2}\) iff diagonals of \(^tAC, ^tBD\) are even
  • \(\Theta:\mathbb{C}^g\times \mathbb{H}_g\to \mathbb{C}\)

\[ \Theta(\mathbf{z},\Omega):=\sum_{{\mathbf{n}\in{\mathbb Z}^g}}e^{{\pi i ^t\mathbf{n}\cdot\boldsymbol{\Omega}\cdot\mathbf{n}}}e^{{2\pi i\mathbf{n}\cdot\mathbf{z}}} ,\, \Omega\in \mathbb{H}_g,\mathbb{z}\in \mathbb{C}^g \]

  • quasi-periodicity

Let \(\mathbf{a},\mathbf{b}\in \mathbb{Z}^g,\mathbf{z}\in \mathbb{C}^g,\Omega\in \mathbb{H}_g\). We have \[ \Theta (\mathbf{z}+\Omega \mathbf{a}+\mathbf{b},\Omega)=\exp(-\pi i\cdot ^t\mathbf{a} \Omega \mathbf{a}-2\pi i ^t\mathbf{a}\mathbf{z})\Theta(\mathbf{z},\Omega) \]

  • modularity

Let \(\gamma=\begin{pmatrix}A & B \\ C & D \\ \end{pmatrix}\in \Gamma_{1,2}\). We have \[ \Theta \left(^t(C\Omega + D)^{-1} \mathbf{z}, (A\Omega+B)(C\Omega + D)^{-1}\right)=\zeta_{\gamma}\det(C\Omega+D)^{1/2}\exp(\pi i\cdot ^t\mathbf{z}(C\Omega+D)^{-1}C\mathbf{z})\Theta(\mathbf{z},\Omega),\,\mathbf{z}\in \mathbb{C}^g,\Omega\in \mathbb{H}_g \] where \(\zeta_\gamma\) is an 8-th root of unity depending in \(\gamma\)

Heisenberg group

  • Heisenberg group \(H(2g, \mathbb{R})\) : central extension of \(V\) by \(S^1=\{z\in \mathbb{C}:|z|=1\}\)
  • note that \(\psi(x,y)=\exp(\pi i A(x,y)),\,x,y\in V\) is a 2-cocycle
  • Heisenberg group \(H(2g, \mathbb{R}):=\{(\lambda,x)|\lambda\in S^1,x\in V\}\) with

\[ (\lambda,x)\cdot (\mu, y):=(\lambda \mu \psi(x,y),x+y) \] \[ 1 \rightarrow S^1~\rightarrow~H(2g, \mathbb{R})~\rightarrow~V \rightarrow 0\]

  • central extension of \(V\) by \(S^1\)
thm (Stone-von Neumann)

There exists a unique irreducible unitary representation \[ U:H(2g,\mathbb{R})\to Aut(\mathcal{H}) \] such that \(U_{\lambda}=\lambda \operatorname{id}_{\mathcal{H}}\) for all \(\lambda \in S^1\). In other words, if there are two such representations \(U^{(1)}\) and \(U^{(2)}\) on \(\mathcal{H}_1\) and \(\mathcal{H}_2\), then there exists an isomorphism \(A: \mathcal{H}_1 \to \mathcal{H}_2\) such that \[ A\circ U^{(1)}\circ A^{-1}=U^{(2)} \\ \begin{array}{ccc} \mathcal{H}_1 & \overset{A}{\longrightarrow } & \mathcal{H}_2 \\ \downarrow U^{(1)} & \text{} & \downarrow U^{(2)} \\ \mathcal{H}_1 & \overset{A}{\longrightarrow } & \mathcal{H}_2 \end{array} \]

  • \(A\) is an intertwinter between \(U^{(1)}\) and \(U^{(2)}\)
  • related to the equivalence of matrix mechanics and wave mechanics in the early days of quantum mechanics

realization

  • let \(\mathcal{H}_1:=L^2(\mathbb{R}^g)\)
  • for \((\lambda,y_1,y_2)\in H(2g, \mathbb{R})\), \(x_1\in \mathbb{R}^g\) and \(\varphi\in \mathcal{H}\), define

\[ U_{(\lambda,y_1,y_2)}\varphi(x_1):=\lambda \exp(2\pi i (^tx_1y_2+^ty_1y_2/2))\varphi(x_1+y_1) \]

  • called the Schrodinger representation of \(H(2g, \mathbb{R})\)

Heisenberg algebra

  • the Lie algebra \(\mathfrak{h}(2g,\mathbb{R})\) of \(H(2g,\mathbb{R})\) has a basis \[A_1,\cdots,A_g, B_1,\cdots,B_g,C\] with

\[ [A_i, B_j] = \delta_{ij}C, [A_i, C] =[B_j, C] = 0 \]

  • want to get a reprsentation \(\delta U\) of \(\mathfrak{h}(2g,\mathbb{R})\) on a certain dense subspace \(\mathcal{H}_{\infty}\) of \(\mathcal{H}_1\)
  • for \(X\in \mathfrak{h}(2g,\mathbb{R})\), let

\[ \delta U_{X}f:=\lim_{t\to 0}\frac{(U_{\exp_H(tX)}f)-f}{t} \]

  • on \(\mathcal{H}_1\)
  • \(A_i\) acts as \(\frac{\partial f}{\partial x_i}\)
  • \(B_i\) acts as \(2\pi i x_i f(x)\)
  • \(C\) acts as \(2\pi i f(x)\)

theta as matrix coefficients

  • \(\mathcal{H}_{\infty}\), Schwartz space
  • \(\mathcal{H}_{-\infty}\), the space of conjugate linear continuous maps from \(\mathcal{H}_{\infty}\) to \(\mathbb{C}\)
  • let \(W_{\Omega}:=\langle \delta U_{A_i}-\sum_{j}\Omega_{ij} \delta U_{B_j},\, i=1,\cdots, g\rangle\), subalgebra of \(\mathfrak{h}(2g,\mathbb{R})\otimes \mathbb{C}\)
prop

There is a unique \(f_{\Omega}\in \mathcal{H}_{\infty}\), unique up to scalars, such that \(\delta U_{X} f_{\Omega}=0, \forall X\in W_{\Omega}\)

  • Let \(\sigma:\mathbb{Z}^{2g}\to H(2g, \mathbb{R})\) defined by

\[ \sigma(n):=((-1)^{^tn_1n_2},n),\, n\in \mathbb{Z}^{2g} \]

prop

There is a unique \(\mu_{\mathbb{Z}}\in \mathcal{H}_{-\infty}\), unique up to scalars, which is invariant under \(U_x,\, x\in \sigma(L)\)

  • we get a function on \(H(2g,\mathbb{R})\) as a matrix coefficient

\[ h\to \langle U_hf_{\Omega},\mu_{\mathbb{Z}} \rangle :=\overline{\mu_{\mathbb{Z}}(U_hf_{\Omega})},\,h\in H(2g,\mathbb{R}) \]

thm

Let \(\Omega\in \mathbb{H}_g\) be fixed. Let \(\mathcal{H}\) be a representation of \(H(2g,\mathbb{R})\) and \(f_{\Omega},\mu_{\mathbb{Z}}\) as above. For \(x\in V=\mathbb{R}^{2g}\), \[ \langle U_{(1,x)}f_{\Omega}, \mu_{\mathbb{Z}}\rangle=c\exp(\pi i ^tx_1 \underline{\mathbf{x}})\Theta(\underline{\mathbf{x}},\Omega) \] for some \(c\in \mathbb{C}^{\times}\)

quasi-periodicity

  • for \(n=(n_1,n_2)\in \mathbb{Z}^{g}\times \mathbb{Z}^{g}\mathbb{Z}^{2g}\),

\[ \begin{aligned} \exp(\pi i ^tx_1 \underline{\mathbf{x}})\Theta(\underline{\mathbf{x}},\Omega)&=\langle U_{(1,x)}f_{\Omega}, \mu_{\mathbb{Z}}\rangle \\ &=\langle U_{\sigma(n)}U_{(1,x)}f_{\Omega}, U_{\sigma(n)} \mu_{\mathbb{Z}}\rangle \\ &=\langle U_{(-1)^{^tn_1n_2}\psi(n,x),x+n}f_{\Omega},\mu_{\mathbb{Z}}\rangle \\ &=(-1)^{^tn_1n_2}\psi(n,x)\exp(\pi i ^t(x_1+n_1)(\underline{\mathbf{x+n}}))\Theta(\underline{\mathbf{x+n}},\Omega) \end{aligned} \]

metaplectic group

covering of the symplectic group

  • let \(\gamma\in Sp_{2g}(\mathbb{R})\). As it preserves \(A\), it induces an automorphism of \(H(2g,\mathbb{R})\) by

\[ (\lambda,x)\mapsto (\lambda, \gamma x) \]

  • define a new representation \(U'\) of \(H(2g,\mathbb{R})\) on \(\mathcal{H}\) by

\[ U'_{(\lambda,x)}f:=U_{(\lambda,\gamma x)}f \]

  • by the Stone-von Neumann theorem, there exists a unitary map \(A_{\gamma}:\mathcal{H}\to \mathcal{H}\) intertwining \(U\) and \(U'\)
  • let \(U(\mathcal{H})\) be the group of unitary isomorphisms of \(\mathcal{H}\) and define

\[ \widetilde{Mp}(2g,\mathbb{R}):=\{A\in U(\mathcal{H}) : A=A_{\gamma} \text{for some } \gamma \in Sp_{2g}(\mathbb{R})\} \]

  • then for \(A\in \widetilde{Mp}(2g,\mathbb{R})\), there exists \(\gamma \in Sp_{2g}(\mathbb{R})\) such that

\[ AU_{(\lambda,x)}A^{-1}=U_{(\lambda,\gamma x)} \label{star} \]

lemma

Given \(A\in \widetilde{Mp}(2g,\mathbb{R})\), there exists unique \(\gamma \in Sp_{2g}(\mathbb{R})\) such that \(A=A_{\gamma}\).

  • we get an exact sequence

\[ 1 \rightarrow S^1~\rightarrow~\widetilde{Mp}(2g,\mathbb{R})~\overset{\rho}{\rightarrow}~Sp(2g,\mathbb{R}) \rightarrow 1\]

  • Let \(\gamma\in Sp(2g,\mathbb{R})\) and \(P\in \widetilde{Mp}(2g,\mathbb{R})\) such that \(\rho(P)=\gamma\). Then

\[ \begin{aligned} \exp(\pi i ^tx_1 \underline{\mathbf{x}})\Theta(\underline{\mathbf{x}},\Omega)&=\langle PU_{(1,x)}f_{\Omega}, P\mu_{\mathbb{Z}}\rangle\\ &=\langle U_{(1,\gamma x)}P f_{\Omega}, P\mu_{\mathbb{Z}}\rangle \end{aligned} \] where the second equality follows from \ref{star}

  • once we compute \(P f_{\Omega}, P\mu_{\mathbb{Z}}\), the functional equation of \(\Theta\) will fall out

computing \(P f_{\Omega}\)

thm

Let \(P\in \widetilde{Mp}(2g,\mathbb{R})\), \(\rho(P)=\gamma\). We choose \(f_{\Omega}(x)=\exp(\pi i ^tx \Omega x)\) for \(\Omega\in \mathbb{H}_{g}\). Then \[ Pf_{\Omega}=C(P,\Omega)f_{\gamma*\Omega}, \] where \(C(P,\Omega)\) is, up to a scalar of absoulte value one, a branch of \(\det(-B\Omega+A)^{-1/2}\) on \(\mathbb{H}_{g}\)

  • \(\chi: \widetilde{Mp}(2g,\mathbb{R})\to S^1\), \(\chi(P):=\det(-B\Omega+A)C(P,\Omega)^2\) is a character
  • \(\operatorname{ker}(\chi)=Mp(2g,\mathbb{R})\) central ext of \(Sp_{2g}(\mathbb{R})\) by \(\{\pm 1\}\)

computing \(P\mu_{\mathbb{Z}}\)

  • Recall that \(\mu_{\mathbb{Z}}\in \mathcal{H}_{-\infty}\) is killed by \(U_x-1\) for any \(x\in \sigma(\mathbb{Z}^{2g})\).
  • for \(\tilde{\gamma}\in Mp(2g,\mathbb{R})\) with \(\rho(\tilde{\gamma})=\gamma\in \Gamma_{1,2}\), \(\tilde{\gamma}\mu_{\mathbb{Z}}\) is killed by \(U_{T_{\gamma}x}-1\) for \(x\in \sigma(\mathbb{Z}^{2g})\).
  • from the uniqueness of \(\mu_{\mathbb{Z}}\), we get

\[ \tilde{\gamma}\mu_{\mathbb{Z}}=\eta(\tilde{\gamma})\mu_{\mathbb{Z}} \] where \(\eta(\tilde{\gamma})\in \mathbb{C}^{\times}\).

  • \(\eta:\rho^{-1}(\Gamma_{1,2})\cap Mp(2g,\mathbb{R})\to \mathbb{C}^{\times}\) is a character
lemma
  1. \(\eta\) surjects on the 8-th root of unity
  2. Consider \(\eta^2\) as a character on \(\Gamma_{1,2}\). If \(\operatorname{ker} \eta^2=\Delta\), then \(\Delta\) contains \(\Gamma_4=\{\gamma\in Sp_{2g}(\mathbb{Z}):\gamma=I_g \mod 4\}\)

functional equation

  • for \(x \in \mathbb{R}^{2g}\) and \(\Omega\in \mathbb{H}_g\), let

\[ \Theta[x](\Omega):=\exp(\pi i ^tx_1 \underline{\mathbf{x}})\Theta(\underline{\mathbf{x}},\Omega) \]

thm

For \(\mathbb{x}\in \mathbb{R}^{2g}, \Omega\in \mathbb{H}_g\) and \(\tilde{\gamma}\in Mp(2g,\mathbb{R})\) with \(\rho(\tilde{\gamma})=\gamma=\begin{pmatrix}A & B \\ C & D \\ \end{pmatrix}\in \Gamma_{1,2}\), we have \[ \Theta[x](\Omega)=\overline{\eta(\tilde{\gamma})} \det(-B\Omega+A)^{1/2}\Theta[\gamma x]\left((D\Omega-C)(-B\Omega+A)^{-1}\right) \]

memo

  • \(\gamma=\begin{pmatrix}A & B \\ C & D \\\end{pmatrix}\in \Gamma_g\)

\[ \begin{align} ^tAC=^tCA \\ ^tBD=^tDB \\ ^tAD-^tCB= I_g \end{align} \]

  • Igusa subgroup \(\Gamma_{1,2}:=\{\gamma\in \Gamma_g|Q(\gamma \mathbf{x})=Q(\mathbf{x}) \pmod 2\}\), where \(\mathbf{x}=(\mathbf{x_1},\mathbf{x_2})\in \mathbb{Z}^g\times \mathbb{Z}^g=\mathbb{Z}^{2g}\), \(Q(\mathbf{x})=^t\mathbf{x_1} \mathbf{x_2}\)
  • for \(\Omega\in \mathbb{H}_g\), define a lattice \(\Lambda_{\Omega}=\mathbb{Z}^g+\Omega \mathbb{Z}^g\subset \mathbb{C}^g\)
  • a smooth vector \(f_{\Omega}\in \mathcal{H}_{\infty}\), (Schwartz space, rapidly decreasing smooth function)
  • a functional \(\mu_{\mathbb{Z}}\in \mathcal{H}_{-\infty}\), where \(\mathcal{H}_{-\infty}\) is the space conjugate linear continuous maps from \(\mathcal{H}_{\infty}\) to \(\mathbb{C}\)
  • let \(\mathbf{x}=(x_1,x_2)\) and \(\underline{\mathbf{x}}=\Omega x_1+x_2\)
  • \(\Theta(\underline{\mathbf{x}},\Omega)\) appears as pairing

\[ \langle U_{(1,x)}f_{\Omega}, \mu_{\mathbb{Z}}\rangle=c\exp(\pi i ^tx_1 \underline{\mathbf{x}})\Theta(\underline{\mathbf{x}},\Omega) \]

  • \(A_i=p_i,B_i=x_i\) in usual notation for Heisenberg algebra
  • \([X,P] = X P - P X = i \hbar\)

related items

computational resource