"Dwork pencil of quintic threefolds"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
imported>Pythagoras0  | 
				Pythagoras0 (토론 | 기여)   | 
				||
| (다른 사용자 한 명의 중간 판 9개는 보이지 않습니다) | |||
| 1번째 줄: | 1번째 줄: | ||
| + | ==introduction==  | ||
| + | * The derived category of coherent sheaves on a general quintic threefold is a central object in mirror symmetry  | ||
| + | * 1,1,27,2875, 698005,  | ||
| + | * On a general quintic threefold <math>Y\subset \mathbb{P}^4</math> there are 2875 lines  | ||
| + | |||
| + | |||
| + | ==memo==  | ||
| + | * http://mathoverflow.net/questions/160561/the-classical-number-2875-of-lines-on-the-quintic-as-a-dt-invariant/160846#160846  | ||
| + | * http://mathoverflow.net/questions/215775/asymptotic-int-m-mathrmexp-mathbfe-leftn-fract2-pi-i-right-lef  | ||
| + | |||
| + | ==related items==  | ||
| + | * [[Mirror symmetry]]  | ||
| + | * [[Dwork K3 surfaces]]  | ||
| + | |||
==expositions==  | ==expositions==  | ||
| − | * https://docs.google.com/file/d/0B8XXo8Tve1cxUV9VQ3dtZjhMYjA/edit  | + | * Pandharipande, R., and R. P. Thomas. 2011. “13/2 Ways of Counting Curves.” arXiv:1111.1552 [hep-Th], November. http://arxiv.org/abs/1111.1552.  | 
| + | * Zagier, https://docs.google.com/file/d/0B8XXo8Tve1cxUV9VQ3dtZjhMYjA/edit  | ||
==articles==  | ==articles==  | ||
| + | * Fité, Francesc, Kiran S. Kedlaya, and Andrew V. Sutherland. “Sato-Tate Groups of Some Weight 3 Motives.” arXiv:1212.0256 [math], December 2, 2012. http://arxiv.org/abs/1212.0256.  | ||
| + | * Oguiso, Keiji, and Xun Yu. “Automorphism Groups of Smooth Quintic Threefolds.” arXiv:1504.05011 [math], April 20, 2015. http://arxiv.org/abs/1504.05011.  | ||
| + | * Segal, Ed, and Richard P. Thomas. ‘Quintic Threefolds and Fano Elevenfolds’. arXiv:1410.6829 [math], 24 October 2014. http://arxiv.org/abs/1410.6829.  | ||
| + | * Shparlinski, Igor E. “On the Density of Integer Points on the Generalised Markoff-Hurwitz and Dwork Hypersurfaces.” arXiv:1404.5866 [math], April 23, 2014. http://arxiv.org/abs/1404.5866.  | ||
* Candelas, Philip, Xenia de la Ossa, Bert van Geemen, and Duco van Straten. 2012. “Lines on the Dwork Pencil of Quintic Threefolds.” Advances in Theoretical and Mathematical Physics 16 (6): 1779–1836.  | * Candelas, Philip, Xenia de la Ossa, Bert van Geemen, and Duco van Straten. 2012. “Lines on the Dwork Pencil of Quintic Threefolds.” Advances in Theoretical and Mathematical Physics 16 (6): 1779–1836.  | ||
* Musta\ct\va, Anca. 2013. “Degree 1 Curves in the Dwork Pencil and the Mirror Quintic.” Mathematische Annalen 355 (1): 97–130. doi:10.1007/s00208-011-0668-x.  | * Musta\ct\va, Anca. 2013. “Degree 1 Curves in the Dwork Pencil and the Mirror Quintic.” Mathematische Annalen 355 (1): 97–130. doi:10.1007/s00208-011-0668-x.  | ||
| + | [[분류:migrate]]  | ||
2020년 11월 13일 (금) 18:44 기준 최신판
introduction
- The derived category of coherent sheaves on a general quintic threefold is a central object in mirror symmetry
 - 1,1,27,2875, 698005,
 - On a general quintic threefold \(Y\subset \mathbb{P}^4\) there are 2875 lines
 
memo
- http://mathoverflow.net/questions/160561/the-classical-number-2875-of-lines-on-the-quintic-as-a-dt-invariant/160846#160846
 - http://mathoverflow.net/questions/215775/asymptotic-int-m-mathrmexp-mathbfe-leftn-fract2-pi-i-right-lef
 
expositions
- Pandharipande, R., and R. P. Thomas. 2011. “13/2 Ways of Counting Curves.” arXiv:1111.1552 [hep-Th], November. http://arxiv.org/abs/1111.1552.
 - Zagier, https://docs.google.com/file/d/0B8XXo8Tve1cxUV9VQ3dtZjhMYjA/edit
 
articles
- Fité, Francesc, Kiran S. Kedlaya, and Andrew V. Sutherland. “Sato-Tate Groups of Some Weight 3 Motives.” arXiv:1212.0256 [math], December 2, 2012. http://arxiv.org/abs/1212.0256.
 - Oguiso, Keiji, and Xun Yu. “Automorphism Groups of Smooth Quintic Threefolds.” arXiv:1504.05011 [math], April 20, 2015. http://arxiv.org/abs/1504.05011.
 - Segal, Ed, and Richard P. Thomas. ‘Quintic Threefolds and Fano Elevenfolds’. arXiv:1410.6829 [math], 24 October 2014. http://arxiv.org/abs/1410.6829.
 - Shparlinski, Igor E. “On the Density of Integer Points on the Generalised Markoff-Hurwitz and Dwork Hypersurfaces.” arXiv:1404.5866 [math], April 23, 2014. http://arxiv.org/abs/1404.5866.
 - Candelas, Philip, Xenia de la Ossa, Bert van Geemen, and Duco van Straten. 2012. “Lines on the Dwork Pencil of Quintic Threefolds.” Advances in Theoretical and Mathematical Physics 16 (6): 1779–1836.
 - Musta\ct\va, Anca. 2013. “Degree 1 Curves in the Dwork Pencil and the Mirror Quintic.” Mathematische Annalen 355 (1): 97–130. doi:10.1007/s00208-011-0668-x.