"Talk on String functions and quantum affine algebras"의 두 판 사이의 차이
imported>Pythagoras0  | 
				Pythagoras0 (토론 | 기여)   | 
				||
| (다른 사용자 한 명의 중간 판 73개는 보이지 않습니다) | |||
| 1번째 줄: | 1번째 줄: | ||
==abstract==  | ==abstract==  | ||
The character of an irreducible representation with dominant integral highest weight of an affine Lie algebra can be written as a linear combination of theta functions, with coefficients given by string functions which are modular forms. There are still many aspects of string functions that are not well-understood. In this talk I will review the basic properties of them, and explain certain connections with finite-dimensional representations of quantum affine algebras.  | The character of an irreducible representation with dominant integral highest weight of an affine Lie algebra can be written as a linear combination of theta functions, with coefficients given by string functions which are modular forms. There are still many aspects of string functions that are not well-understood. In this talk I will review the basic properties of them, and explain certain connections with finite-dimensional representations of quantum affine algebras.  | ||
| − | + | ===key message===  | |
| + | * string functions know about Kirillov-Reshetikhin modules  | ||
| + | * infinite vs. finite  | ||
| + | <math>  | ||
| + | \newcommand{\g}{\mathfrak{g}}  | ||
| + | \newcommand{\h}{\mathfrak{h}}  | ||
| + | \newcommand{\res}{\operatorname{res}}  | ||
| + | \newcommand{\uqg}{U_{q}(\g)}  | ||
| + | \newcommand{\ghat}{\widehat{\g}}  | ||
| + | \newcommand{\uqghat}{U_{q}(\ghat)}  | ||
| + | </math>  | ||
==review of affine Lie algebras and their integrable representations==  | ==review of affine Lie algebras and their integrable representations==  | ||
===affine Lie algebras===  | ===affine Lie algebras===  | ||
* [[Affine Kac-Moody algebra]]  | * [[Affine Kac-Moody algebra]]  | ||
| − | *   | + | * <math>\overline{\mathfrak{g}}</math> : complex simple Lie algebra of rank <math>r</math> assoc. to Cartan matrix <math>(a_{ij})_{i,j\in \overline{I}}</math>, <math>\overline{I}=\{1,\cdots, r\}</math>  | 
| − | + | * untwisted affine Kac-Moody algebra <math>\mathfrak{g}</math>   | |
| − | * untwisted affine Kac-Moody algebra  | + | :<math>\mathfrak{g}=\overline{\mathfrak{g}}\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c \oplus\mathbb{C}d</math>  | 
| − | + | * <math>(a_{ij})_{i,j\in I}</math> : extended Cartan matrix <math>I=\{0\}\cup \overline{I}</math>  | |
| − | * <math>(a_{ij})_{i,j\in I}</math> : extended Cartan matrix   | + | * can be also defined as a Lie algebra with generators <math>e_i,h_i,f_i , (i=0,1,2,\cdots, r)</math> and relations, for example,  | 
| − | |||
| − | |||
| − | * generators <math>e_i,h_i,f_i , (i=0,1,2,\cdots, r)</math>   | ||
| − | |||
| − | |||
| − | |||
| − | |||
** <math>\left(\text{ad} e_i\right){}^{1-a_{i,j}}\left(e_j\right)=0</math> (<math>i\neq j</math>)  | ** <math>\left(\text{ad} e_i\right){}^{1-a_{i,j}}\left(e_j\right)=0</math> (<math>i\neq j</math>)  | ||
| − | + | *  basis of the Cartan subalgebra <math>\mathfrak{h}</math>; <math>h_0,h_ 1,\cdots,h_r,d</math>  | |
| − | *  basis of the Cartan subalgebra   | + | *  dual basis for <math>\mathfrak{h}^{*}</math>; <math>\Lambda_0,\Lambda_1,\cdots,\Lambda_r,\delta</math>  | 
| − | *  dual basis for   | ||
* we call <math>\Lambda_0,\Lambda_1,\cdots,\Lambda_r</math> the fundamental weights and  <math>\delta</math> the imaginary root  | * we call <math>\Lambda_0,\Lambda_1,\cdots,\Lambda_r</math> the fundamental weights and  <math>\delta</math> the imaginary root  | ||
* simple roots <math>\alpha_0,\alpha_1,\cdots,\alpha_r</math>  | * simple roots <math>\alpha_0,\alpha_1,\cdots,\alpha_r</math>  | ||
| + | * <math>a_i,\, i=0,1,\dots, r</math> : marks  | ||
| + | * <math>a_i^{\vee},\, i=0,1,\dots, r</math> : comarks  | ||
* distinguished elements  | * distinguished elements  | ||
| + | ** longest root of <math>\overline{\mathfrak{g}}</math> : <math>\theta = \sum_{i=1}^{r}a_i\alpha_i</math>  | ||
** central element <math>c=\sum_{i=0}^{r}a_i^{\vee}h _i</math>  | ** central element <math>c=\sum_{i=0}^{r}a_i^{\vee}h _i</math>  | ||
** imaginary root <math>\delta=\sum_{i=0}^{r}a_i\alpha_i</math>  | ** imaginary root <math>\delta=\sum_{i=0}^{r}a_i\alpha_i</math>  | ||
** Weyl vector <math>\rho=\sum_{i=0}^{r}\Lambda_i</math>  | ** Weyl vector <math>\rho=\sum_{i=0}^{r}\Lambda_i</math>  | ||
| − | *   | + | |
| + | ===remarks on affine weights===  | ||
| + | * call <math>k=\lambda(c)</math> the level of <math>\lambda\in \mathfrak{h}^{*}</math>  | ||
| + | * sometimes convenient to write <math>\lambda\in \mathfrak{h}^{*}</math> as <math>\lambda=(k;\overline{\lambda};\xi)\in \mathbb{C}\times \overline{\mathfrak{h}}^{*}\times \mathbb{C}</math> where <math>k=\lambda(c)</math>, <math>\overline{\lambda}</math> is the restriction of <math>\lambda</math> on <math>\overline{\mathfrak{h}}</math>, <math>\xi=\lambda(\delta)</math>  | ||
| + | ** <math>\Lambda_0 = (a_0^{\vee};0;0)</math>  | ||
| + | ** <math>\Lambda_i = (a_i^{\vee};\omega_i;0)</math>, for <math>i=1,\dots, r</math> (<math>\omega_i</math> is fundamental weight for <math>\overline{\mathfrak{g}}</math>)  | ||
| + | ** <math>\delta = (0;0;0)</math>, for <math>i=1,\dots, r</math>  | ||
| + | ** <math>\alpha_0 = (0;-\theta;1)</math>  | ||
| + | ** <math>\alpha_i = (0;\alpha_i;0)</math>, for <math>i=1,\dots, r</math> (<math>\alpha_i</math> simple root for <math>\overline{\mathfrak{g}}</math>)  | ||
| + | * bilinear form <math>(\cdot|\cdot)</math> on <math>\mathfrak{h}^{*}</math>   | ||
| + | ** <math>\left((k_1;\overline{\lambda}_1;\xi_1)|(k_2;\overline{\lambda}_2;\xi_2)\right) = k_1\xi_2+k_2\xi_1+(\overline{\lambda}_1|\overline{\lambda}_2)_{\overline{\mathfrak{h}}^{*}}</math>  | ||
| + | * normalize <math>(\cdot|\cdot)</math> so that <math>(\theta|\theta)_{\overline{\mathfrak{h}}^{*}}=2</math>  | ||
| + | * sometimes write <math>\overline{\lambda} = (0;\overline{\lambda};0)</math> by abusing notation  | ||
| + | * let <math>Q=\sum_{i=1}^{r}\Z\, \alpha_i\subseteq \mathfrak{h}^{*}</math> (root lattice of <math>\overline{\mathfrak{g}}</math>)  | ||
| + | * define <math>M\subseteq Q</math> by <math>M=\{\sum_{i=1}^{r}\Z\, \alpha_i^{\vee}\}</math> where <math>\alpha_i^{\vee}=t_i\alpha_i</math> where <math>t_i=\frac{2}{(\alpha_i|\alpha_i)}</math>  | ||
===affine Weyl group===  | ===affine Weyl group===  | ||
* [[Affine Weyl group]]  | * [[Affine Weyl group]]  | ||
| − | * The affine Weyl group   | + | * The affine Weyl group <math>W</math> is generated by <math>s_0,s_1,\cdots, s_r\in \operatorname{Aut}\,\mathfrak{h}^{*}</math> defined by  | 
| − | + | :<math>s_{i}\lambda = \lambda -\lambda(h_i)\alpha_i</math>  | |
| − | for   | + | for <math>i=0,1, \cdots, r</math>.    | 
| − | * for   | + | * for <math>\gamma\in \mathfrak{h}^{*}</math>, define <math>t_{\gamma} : \mathfrak{h}^{*}\to \mathfrak{h}^{*}</math> by  | 
| − | + | :<math>t_{\gamma}(\lambda)=\lambda+\lambda(c)\gamma-\left(\frac{1}{2}\lambda(c)|\gamma|^2+(\gamma|\lambda)\right)\delta </math>   | |
| − | |||
| − | |||
| − | |||
;thm  | ;thm  | ||
| − | Let   | + | Let <math>T=\{t_{\gamma}|\gamma\in M\}</math>. Then <math>W=\overline{W} \ltimes T</math>  | 
===integrable representations and characters===  | ===integrable representations and characters===  | ||
* [[Unitary representations of affine Kac-Moody algebras]]  | * [[Unitary representations of affine Kac-Moody algebras]]  | ||
| − | * for each   | + | * for each <math>\lambda\in \mathfrak{h}^{*}</math>, <math>\exists</math> irreducible <math>\mathfrak{g}</math>-module <math>L(\lambda)</math> (quotient of Verma module)  | 
| − | *   | + | * A <math>\mathfrak{g}</math>-module <math>V</math> is ''integrable'' if <math>V=\oplus_{\lambda\in \mathfrak{h}^{*}}V_{\lambda}</math> and if <math>e_i : V\to V</math> and <math>f_i : V\to V</math> are locally nilpotent for all <math>i=0,1,\cdots, r</math>  | 
| − | + | * <math>\Lambda\in \mathfrak{h}^{*}</math> is dominant integral if <math>\Lambda(\mathfrak{h}_i)\in \mathbb{Z}_{\geq 0},\, i=0,1,\cdots,r</math>  | |
| − | + | * let <math>P_{+}</math> be the set of dominant integral weights, i.e. <math>\{\Lambda\in \mathfrak{h}^{*}|\Lambda=\sum_{i=0}^{l}\lambda_{i}\Lambda_i+\xi \delta, \lambda_i \in\mathbb{Z}_{\geq 0},\xi \in \mathbb{C}\}  | |
| − | *   | + | </math>  | 
| + | ;thm  | ||
| + | Let <math>V</math> be an irreducible <math>\mathfrak{g}</math>-module in a certain category <math>\mathcal{O}</math>. Then <math>V=L(\Lambda)</math> for some <math>\Lambda\in \mathfrak{h}^{*}</math> and   | ||
| + | <math>L(\Lambda)</math> is integrable if and only if <math>\Lambda\in P_{+}</math>  | ||
| + | * why care irreducible and integrable representation? Weyl's character formula holds  | ||
| + | * character of <math>L(\Lambda)</math>  | ||
| + | :<math>\operatorname{ch} L(\Lambda):=\sum_{\lambda\in \mathfrak{h}^{*}}\operatorname{mult}_{\Lambda}(\lambda) e^{\lambda}</math>  | ||
| + | ;thm (Weyl-Kac formula)  | ||
| + | Let <math>\Lambda\in P_{+}</math>. Then  | ||
:<math>  | :<math>  | ||
| − | + | \operatorname{ch} L(\Lambda)=\frac{\sum_{w\in W} (-1)^{\ell(w)}w(e^{\Lambda+\rho})}{\sum_{w\in W} (-1)^{\ell(w)}w(e^{\rho})}  | |
</math>  | </math>  | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | =  | + | ;remark  | 
| − | + | For actual computation of <math>m_{\lambda} = \operatorname{mult}_{\lambda}(\lambda)</math>, more practical to use Freudenthal multiplicity formula  | |
| − | + | :<math>  | |
(|\Lambda+\rho|^2-|\lambda+\rho|^2)m_{\lambda}=2\sum_{\alpha\in \Delta_{+}}\sum_{j\geq 1}(\operatorname{mult} \alpha)(\lambda+j\alpha|\alpha)m_{\lambda+j\alpha}  | (|\Lambda+\rho|^2-|\lambda+\rho|^2)m_{\lambda}=2\sum_{\alpha\in \Delta_{+}}\sum_{j\geq 1}(\operatorname{mult} \alpha)(\lambda+j\alpha|\alpha)m_{\lambda+j\alpha}  | ||
| − | + | </math>  | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
==string functions==  | ==string functions==  | ||
* [[String functions and branching functions]]  | * [[String functions and branching functions]]  | ||
| − | *   | + | * Fix <math>\Lambda\in P_{+}^{k}</math>  | 
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
;def  | ;def  | ||
| − | For each   | + | For each <math>\lambda\in \mathfrak{h}^{*}</math>, the string function <math>c_{\lambda }^{\Lambda}</math> is    | 
| − | + | :<math>  | |
c_{\lambda }^{\Lambda}=e^{-m_{\Lambda,\lambda}\delta}\sum_{n=-\infty}^{\infty}\operatorname{mult}_{\Lambda}(\lambda-n\delta)e^{-n \delta}  | c_{\lambda }^{\Lambda}=e^{-m_{\Lambda,\lambda}\delta}\sum_{n=-\infty}^{\infty}\operatorname{mult}_{\Lambda}(\lambda-n\delta)e^{-n \delta}  | ||
| − | + | </math>  | |
| + | where <math>m_{\Lambda}=\frac{(\Lambda+\rho)^2}{2(k+h^{\vee})}-\frac{\rho^2}{2h^{\vee}}</math> and <math>m_{\Lambda,\lambda}=m_{\Lambda}-\frac{\lambda^2}{2k}</math>  | ||
| + | * note that <math>m_{\Lambda}=h_{\Lambda}-\frac{c(k)}{24}+\xi</math> where <math>h_{\Lambda}=\frac{(\bar{\Lambda}+2\bar{\rho}|\bar{\Lambda})}{2(k+h^{\vee})}</math> and <math>c(k)=\frac{k}{k+h^{\vee}}\dim \mathfrak{\overline{g}}</math> (these number frequently appear in rep. theory of Virasoro algebra)  | ||
| + | ;remarks  | ||
| + | * modular form of weight <math>-r/2</math> after setting <math>q:=e^{-\delta}</math>  | ||
* an explicit expression for the string functions is not known in general  | * an explicit expression for the string functions is not known in general  | ||
* the few that are known were guessed using the modular transformations  | * the few that are known were guessed using the modular transformations  | ||
| − | *   | + | * <math>c_{\lambda }^{\Lambda}=c_{w\lambda }^{\Lambda}</math> for <math>w\in W</math>  | 
| − | + | * [[Theta functions in Kac-Moody algebras]]  | |
| − | + | * for each <math>\lambda\in P^k</math>, define the theta function as  | |
| + | :<math>  | ||
| + | \Theta_{\lambda}=  | ||
| + | e^{-\frac{|\lambda|^2\delta}{2k}}\sum_{\gamma \in M}e^{t_{\gamma}(\lambda)}=e^{k\Lambda_0}\sum_{\gamma\in M+\overline{\lambda}/k}e^{-\frac{1}{2}k|\gamma|^2 \delta + k \gamma}  | ||
| + | </math>  | ||
| + | |||
| + | * A weight <math>\lambda</math> of <math>L(\Lambda)</math> is ''maximal'' if <math>\lambda+\delta</math> is not a weight  | ||
| + | * the set <math>\max(\Lambda)</math> of maximal weights is stable under <math>W</math>  | ||
| + | |||
;thm  | ;thm  | ||
| − | + | :<math>  | |
| − | |||
e^{-m_{\Lambda}\delta}\operatorname{ch} L(\Lambda)=\sum_{\lambda}c^{\Lambda}_{\lambda }\Theta_{\lambda}  | e^{-m_{\Lambda}\delta}\operatorname{ch} L(\Lambda)=\sum_{\lambda}c^{\Lambda}_{\lambda }\Theta_{\lambda}  | ||
| − | + | </math>  | |
;proof  | ;proof  | ||
| − | + | :<math>  | |
\begin{aligned}  | \begin{aligned}  | ||
| − | \operatorname{ch} L(\Lambda)&=\sum_{\lambda\in \max{L(\Lambda)}}\sum_{n=0}^{\infty}\operatorname{mult}_{\Lambda}(\lambda-n\delta)e^{\lambda-n \delta}  | + | \operatorname{ch} L(\Lambda)&=\sum_{\lambda\in \max{L(\Lambda)}}\sum_{n=0}^{\infty}\operatorname{mult}_{\Lambda}(\lambda-n\delta)e^{\lambda-n \delta}    | 
| − | &  | + | &&  | 
| − | &=\sum_{\lambda\in \max{L(\Lambda)}   | + | \text{(any weight <math>\mu</math> is of the form <math>\lambda-n \delta</math> for some unique <math>\lambda, n</math>)}  | 
| − | + | \\  | |
| − | &=\sum_{\lambda\in \max{L(\Lambda)}   | + | &=\sum_{\lambda\in \max{L(\Lambda)}/T} \left(\sum_{\gamma\in M}e^{t_{\gamma}(\lambda)}\right)\left(\sum_{n=0}^{\infty}\operatorname{mult}_{\Lambda}(\lambda-n\delta)e^{-n\delta}\right)\\  | 
| + | &=\sum_{\lambda\in \max{L(\Lambda)}/T} e^{m_{\Lambda}\delta}c^{\Lambda}_{\lambda}\Theta_{\lambda}  | ||
\end{aligned}  | \end{aligned}  | ||
| − | + | </math>  | |
■  | ■  | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
===asymptotic growth of coefficients===  | ===asymptotic growth of coefficients===  | ||
| − | *   | + | * modularity of <math>c_{\lambda }^{\Lambda}</math> implies  | 
;thm (Kac-Peterson)  | ;thm (Kac-Peterson)  | ||
| − | Let   | + | Let <math>\Lambda\in P_{k}^{+},\, \lambda\in \max(\Lambda)</math>. As <math>n\to \infty</math>,    | 
| − | + | :<math>  | |
| − | \operatorname{mult}_{\Lambda}(\lambda-n\delta)\sim (\  | + | \log (\operatorname{mult}_{\Lambda}(\lambda-n\delta))\sim (\frac{2c(k)\pi^2n}{3})^{1/2}  | 
| − | + | </math>  | |
| − | |||
| − | |||
| − | ==  | + | ==conjectural formula for string functions==  | 
* [[Fermionic formula for string functions and parafermion characters]]  | * [[Fermionic formula for string functions and parafermion characters]]  | ||
| − | *   | + | * denote the level by <math>\ell\in \mathbb{Z}</math> and assume <math>\ell\geq 2</math>  | 
| − | *   | + | * <math>H_\ell=\{(a,m)|a=1,\cdots, r, 1\leq m \leq t_a \ell-1\}</math>  | 
* let    | * let    | ||
| − | + | :<math>  | |
K^{m n}_{a b} = \Bigl(\hbox{min}(t_bm, t_an) - {m n\over \ell}\Bigr)  | K^{m n}_{a b} = \Bigl(\hbox{min}(t_bm, t_an) - {m n\over \ell}\Bigr)  | ||
(\alpha_a \vert \alpha_b)  | (\alpha_a \vert \alpha_b)  | ||
| − | + | </math>  | |
| − | ;conjecture '''[  | + | ;conjecture '''[Kuniba-Nakanishi-Suzuki 93]'''  | 
We have  | We have  | ||
\begin{equation}\label{qkns}  | \begin{equation}\label{qkns}  | ||
c^{\ell\Lambda_0}_\lambda(q)\cdot \eta(\tau)^r=  | c^{\ell\Lambda_0}_\lambda(q)\cdot \eta(\tau)^r=  | ||
| − | \sum_{\{N^{(a)}_m\}}\frac{q^{\frac{1}{2}\sum_{(a,m), (b,n) \in H_\ell}  | + | \sum_{\{(N^{(a)}_m)\}}\frac{q^{\frac{1}{2}\sum_{(a,m), (b,n) \in H_\ell}  | 
K^{mn}_{ab}N^{(a)}_mN^{(b)}_n}}  | K^{mn}_{ab}N^{(a)}_mN^{(b)}_n}}  | ||
{\prod_{(a,m) \in H_\ell}(1-q)(1-q^2)\cdots (1-q^{N^{(a)}_m})}  | {\prod_{(a,m) \in H_\ell}(1-q)(1-q^2)\cdots (1-q^{N^{(a)}_m})}  | ||
\end{equation}  | \end{equation}  | ||
| − | up to a rational power of   | + | up to a rational power of <math>q</math>, where <math>\eta</math> is the Dedekind eta function .  | 
| + | |||
The outer sum is over    | The outer sum is over    | ||
| − | + | <math>N^{(a)}_m \in \Z_{\ge 0}</math>  | |
such that    | such that    | ||
| − | + | :<math>\sum_{(a,m) \in H_\ell}mN^{(a)}_m\overline{\alpha_a} \equiv \overline{\lambda}  | |
| − | \mod \ell M.  | + | \mod \ell M.</math>  | 
===example===  | ===example===  | ||
| − | * let   | + | * let <math>\mathfrak{g}=A_1</math>  | 
| − | |||
;thm '''[Lepowski-Primc 1985]'''  | ;thm '''[Lepowski-Primc 1985]'''  | ||
| − | + | :<math>  | |
c^{\ell\Lambda_0}_{\ell\Lambda_0}(\tau)\cdot \eta(\tau)=\sum_{(N_1,\dots,N_{\ell-1})\in \mathbb{Z}_{\geq 0}^{\ell-1}}\frac{q^{\sum_{n,m=1}^{\ell-1} N_n N_m (\min (n,m) -\frac{nm}{\ell})}}  | c^{\ell\Lambda_0}_{\ell\Lambda_0}(\tau)\cdot \eta(\tau)=\sum_{(N_1,\dots,N_{\ell-1})\in \mathbb{Z}_{\geq 0}^{\ell-1}}\frac{q^{\sum_{n,m=1}^{\ell-1} N_n N_m (\min (n,m) -\frac{nm}{\ell})}}  | ||
{\prod_{m=1}^{\ell-1}(1-q)\cdots(1-q^{N_m})}  | {\prod_{m=1}^{\ell-1}(1-q)\cdots(1-q^{N_m})}  | ||
| − | + | </math>  | |
where the sum is under the constraint  | where the sum is under the constraint  | ||
| − | + | <math> \sum_{m=1}^{\ell-1} m N_m    | |
\equiv 0  | \equiv 0  | ||
| − | \ \mathrm{mod}\ \ell  | + | \ \mathrm{mod}\ \ell</math>.  | 
| − | * the   | + | |
| + | |||
| + | ===evidence===  | ||
| + | * compare the asymptotic behavior of \ref{qkns} as <math>t\to 0</math> with <math>q=e^{-t}</math>  | ||
| + | * LHS of \ref{qkns} <math>\exp(\frac{\pi^2(c(\ell)-r)}{6t})</math>  | ||
| + | * RHS of \ref{qkns} <math>\exp(\frac{\sum_{(a,m)\in H_\ell} L(x_{m}^{(a)})}{t})</math>  | ||
| + | where <math>0<x_{m}^{(a)}<1</math> is the solution of the system of equations  | ||
| + | :<math>  | ||
| + | x_{m}^{(a)} = \prod_{(b,n)\in H_{\ell}}(1-x_{n}^{(b)})^{K_{ab}^{mn}},\, (a,m)\in H_{\ell}  | ||
| + | </math>  | ||
| + | and <math>L</math> is the Rogers dilogarithm function  | ||
| + | :<math>  | ||
| + | L(x) = \operatorname{Li}_ 2(x)+\frac{1}{2}\log x\log (1-x),\, 0<x<1  | ||
| + | </math>  | ||
| + | :<math>  | ||
| + | \operatorname{Li}_ 2(x)= \sum_{n=1}^\infty {x^n \over n^2},\, 0<x<1  | ||
| + | </math>  | ||
| + | ;thm (Chapoton, Nakanishi)  | ||
| + | :<math>  | ||
| + | \sum_{(a,m)\in H_\ell} L(x_{m}^{(a)}) = \frac{\pi^2}{6}(c(\ell)-r)  | ||
| + | </math>  | ||
| + | * proof uses Y-systems and cluster algebras  | ||
| + | |||
| + | ===example===  | ||
| + | * <math>\overline{\mathfrak{g}} = B_2</math>, level <math>\ell = 2</math>, rank <math>r=2</math>  | ||
| + | * <math>t_1=1,t_2=2</math>  | ||
| + | * <math>H_{\ell} = \{(1,1),(2,1),(2,2),(2,3)\}</math>  | ||
| + | * dual Coxeter number : <math>h^{\vee}=3</math>  | ||
| + | * <math>\dim \overline{\mathfrak{g}}=10</math>  | ||
| + | * <math>c(\ell)-r = 4-2=2</math>  | ||
| + | * <math>K = \left(  | ||
| + | \begin{array}{cccc}  | ||
| + |  2 & -1 & -2 & -1 \\  | ||
| + |  -1 & 3 & 2 & 1 \\  | ||
| + |  -2 & 2 & 4 & 2 \\  | ||
| + |  -1 & 1 & 2 & 3 \\  | ||
| + | \end{array}  | ||
| + | \right)/2</math>  | ||
| + | * equation for <math>x^{(a)}_m</math>  | ||
| + | :<math>  | ||
| + | \begin{aligned}  | ||
| + | x^{(1)}_1 & = (1-x^{(1)}_1)(1-x^{(2)}_1)^{-1/2}(1-x^{(2)}_2)^{-1}(1-x^{(2)}_3)^{-1/2} \\  | ||
| + | x^{(2)}_1 & = (1-x^{(1)}_1)^{-1/2}(1-x^{(2)}_1)^{3/2}(1-x^{(2)}_2)^{1}(1-x^{(2)}_3)^{1/2}\\  | ||
| + | x^{(2)}_2 & = \dots \\  | ||
| + | x^{(2)}_3 & = \dots \\  | ||
| + | \end{aligned}  | ||
| + | </math>  | ||
| + | * <math>x^{(1)}_1= 3/4,x^{(2)}_1= 2/5,x^{(2)}_2= 4/9,x^{(2)}_3= 2/5</math>  | ||
| + | :<math>  | ||
| + | L\left(\frac{3}{4}\right)+2 L\left(\frac{2}{5}\right)+L\left(\frac{4}{9}\right) = \frac{2\pi^2}{6}  | ||
| + | </math>  | ||
| + | |||
| + | ==quantum affine algebras and KR modules==  | ||
| + | * Q. is there more representation theoretic way to describe <math>x^{(a)}_m</math>?  | ||
| + | * A. these numbers can be obtained from the quantum dimensions of Kirillov-Reshetikhin modules  | ||
| + | * <math>\exists</math> bij. between iso. classes of fin.-dim'l irr. reps of <math>\uqg</math> and the set of <math>I</math>-tuples <math>\mathbf{P}=(P_i)_{i\in I}</math> of polys <math>P_i\in \mathbb{C}[z]</math> with <math>P_i(0)=1</math>, called Drinfeld poly.   | ||
| + | * KR module <math>W^{(a)}_{m}(u)</math> with <math>a\in I</math>, <math>m\in \mathbb{Z}_{\geq 0}</math> and <math>u\in \mathbb{C}^{\times}</math> is associated with Drinfeld polynomials <math>\mathbf{P}=(P_i)_{i\in I}</math> of the form  | ||
| + | :<math>  | ||
| + | P_i(z) =  | ||
| + | \begin{cases}   | ||
| + |  \prod _{s=1}^m \left(1- z u q_{a}^{2(s-1)}\right), & \text{if <math>i=a</math>}\\  | ||
| + |  1, & \text{otherwise} \\   | ||
| + | \end{cases}  | ||
| + | </math>  | ||
| + | where <math>q_{a} = q^{t/t_a}</math> and <math>t=\max_{a\in I}t_a</math>.  | ||
| + | |||
| + | * The quantum dimension of irr. h.w. <math>U_q(\overline{\mathfrak{g}})</math>-modules <math>L(\lambda)</math> at level <math>k</math> is  | ||
| + | :<math>  | ||
| + | \frac{\prod_{\alpha\in \Delta_{+}}\sin \frac{\pi(\lambda+\rho|\alpha)}{h^{\vee}+k}}{ \prod_{\in \Delta_{+}}\sin \frac{\pi (\rho|\alpha)}{h^{\vee}+k}}.  | ||
| + | </math>  | ||
| + | * recovers dimension as <math>k\to \infty</math> (qdim is an alg. int. not necessarily positive)  | ||
| + | * regarding <math>W^{(a)}_{m}(u)</math> as <math>U_q(\overline{\mathfrak{g}})</math>, obtain quantum dimension of a KR module  | ||
| + | ;thm (L.)  | ||
| + | Fix level <math>\ell\geq 2</math>. Let <math>Q_{m}^{(a)}</math> be the qdim of <math>W^{(a)}_{m}(u)</math> at level <math>\ell</math>. Then <math>Q_{m}^{(a)}</math> with <math>(a,m)\in H_{\ell}</math> is positive, <math>Q_{t_a\ell}^{(a)}=1</math>, and <math>x^{(a)}_m= 1-\frac{Q_{m-1}^{(a)}Q_{m+1}^{(a)}}{(Q_{m}^{(a)})^2}</math>.  | ||
| + | * need fusion ring  | ||
| + | ===example===  | ||
| + | * <math>\overline{\mathfrak{g}} = B_2</math>, level <math>\ell = 2</math>, rank <math>r=2</math>  | ||
| + | * <math>Q_{m}^{(1)} = 1,2,1</math> for <math>m=0,1,2</math>  | ||
| + | * <math>Q_{m}^{(2)} = 1,\sqrt{5},3,\sqrt{5},1</math> for <math>m=0,1,2,3,4</math>  | ||
| + | |||
| + | ==memo==  | ||
| + | :<math>  | ||
| + | \operatorname{mult}_{\Lambda}(\lambda-n\delta)\sim (\text{const})\times n^{-(1/4)(r+3)}e^{4\pi (a n)^{1/2}}  | ||
| + | </math>  | ||
| + | |||
==related items==  | ==related items==  | ||
| 186번째 줄: | 269번째 줄: | ||
[[분류:Talks and lecture notes]]  | [[분류:Talks and lecture notes]]  | ||
[[분류:theta]]  | [[분류:theta]]  | ||
| + | [[분류:migrate]]  | ||
2020년 11월 16일 (월) 04:31 기준 최신판
abstract
The character of an irreducible representation with dominant integral highest weight of an affine Lie algebra can be written as a linear combination of theta functions, with coefficients given by string functions which are modular forms. There are still many aspects of string functions that are not well-understood. In this talk I will review the basic properties of them, and explain certain connections with finite-dimensional representations of quantum affine algebras.
key message
- string functions know about Kirillov-Reshetikhin modules
 - infinite vs. finite
 
\( \newcommand{\g}{\mathfrak{g}} \newcommand{\h}{\mathfrak{h}} \newcommand{\res}{\operatorname{res}} \newcommand{\uqg}{U_{q}(\g)} \newcommand{\ghat}{\widehat{\g}} \newcommand{\uqghat}{U_{q}(\ghat)} \)
review of affine Lie algebras and their integrable representations
affine Lie algebras
- Affine Kac-Moody algebra
 - \(\overline{\mathfrak{g}}\) : complex simple Lie algebra of rank \(r\) assoc. to Cartan matrix \((a_{ij})_{i,j\in \overline{I}}\), \(\overline{I}=\{1,\cdots, r\}\)
 - untwisted affine Kac-Moody algebra \(\mathfrak{g}\)
 
\[\mathfrak{g}=\overline{\mathfrak{g}}\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c \oplus\mathbb{C}d\]
- \((a_{ij})_{i,j\in I}\) : extended Cartan matrix \(I=\{0\}\cup \overline{I}\)
 - can be also defined as a Lie algebra with generators \(e_i,h_i,f_i , (i=0,1,2,\cdots, r)\) and relations, for example,
- \(\left(\text{ad} e_i\right){}^{1-a_{i,j}}\left(e_j\right)=0\) (\(i\neq j\))
 
 - basis of the Cartan subalgebra \(\mathfrak{h}\); \(h_0,h_ 1,\cdots,h_r,d\)
 - dual basis for \(\mathfrak{h}^{*}\); \(\Lambda_0,\Lambda_1,\cdots,\Lambda_r,\delta\)
 - we call \(\Lambda_0,\Lambda_1,\cdots,\Lambda_r\) the fundamental weights and \(\delta\) the imaginary root
 - simple roots \(\alpha_0,\alpha_1,\cdots,\alpha_r\)
 - \(a_i,\, i=0,1,\dots, r\) : marks
 - \(a_i^{\vee},\, i=0,1,\dots, r\) : comarks
 - distinguished elements
- longest root of \(\overline{\mathfrak{g}}\) \[\theta = \sum_{i=1}^{r}a_i\alpha_i\]
 - central element \(c=\sum_{i=0}^{r}a_i^{\vee}h _i\)
 - imaginary root \(\delta=\sum_{i=0}^{r}a_i\alpha_i\)
 - Weyl vector \(\rho=\sum_{i=0}^{r}\Lambda_i\)
 
 
remarks on affine weights
- call \(k=\lambda(c)\) the level of \(\lambda\in \mathfrak{h}^{*}\)
 - sometimes convenient to write \(\lambda\in \mathfrak{h}^{*}\) as \(\lambda=(k;\overline{\lambda};\xi)\in \mathbb{C}\times \overline{\mathfrak{h}}^{*}\times \mathbb{C}\) where \(k=\lambda(c)\), \(\overline{\lambda}\) is the restriction of \(\lambda\) on \(\overline{\mathfrak{h}}\), \(\xi=\lambda(\delta)\)
- \(\Lambda_0 = (a_0^{\vee};0;0)\)
 - \(\Lambda_i = (a_i^{\vee};\omega_i;0)\), for \(i=1,\dots, r\) (\(\omega_i\) is fundamental weight for \(\overline{\mathfrak{g}}\))
 - \(\delta = (0;0;0)\), for \(i=1,\dots, r\)
 - \(\alpha_0 = (0;-\theta;1)\)
 - \(\alpha_i = (0;\alpha_i;0)\), for \(i=1,\dots, r\) (\(\alpha_i\) simple root for \(\overline{\mathfrak{g}}\))
 
 - bilinear form \((\cdot|\cdot)\) on \(\mathfrak{h}^{*}\)
- \(\left((k_1;\overline{\lambda}_1;\xi_1)|(k_2;\overline{\lambda}_2;\xi_2)\right) = k_1\xi_2+k_2\xi_1+(\overline{\lambda}_1|\overline{\lambda}_2)_{\overline{\mathfrak{h}}^{*}}\)
 
 - normalize \((\cdot|\cdot)\) so that \((\theta|\theta)_{\overline{\mathfrak{h}}^{*}}=2\)
 - sometimes write \(\overline{\lambda} = (0;\overline{\lambda};0)\) by abusing notation
 - let \(Q=\sum_{i=1}^{r}\Z\, \alpha_i\subseteq \mathfrak{h}^{*}\) (root lattice of \(\overline{\mathfrak{g}}\))
 - define \(M\subseteq Q\) by \(M=\{\sum_{i=1}^{r}\Z\, \alpha_i^{\vee}\}\) where \(\alpha_i^{\vee}=t_i\alpha_i\) where \(t_i=\frac{2}{(\alpha_i|\alpha_i)}\)
 
affine Weyl group
- Affine Weyl group
 - The affine Weyl group \(W\) is generated by \(s_0,s_1,\cdots, s_r\in \operatorname{Aut}\,\mathfrak{h}^{*}\) defined by
 
\[s_{i}\lambda = \lambda -\lambda(h_i)\alpha_i\] for \(i=0,1, \cdots, r\).
- for \(\gamma\in \mathfrak{h}^{*}\), define \(t_{\gamma} : \mathfrak{h}^{*}\to \mathfrak{h}^{*}\) by
 
\[t_{\gamma}(\lambda)=\lambda+\lambda(c)\gamma-\left(\frac{1}{2}\lambda(c)|\gamma|^2+(\gamma|\lambda)\right)\delta \]
- thm
 
Let \(T=\{t_{\gamma}|\gamma\in M\}\). Then \(W=\overline{W} \ltimes T\)
integrable representations and characters
- Unitary representations of affine Kac-Moody algebras
 - for each \(\lambda\in \mathfrak{h}^{*}\), \(\exists\) irreducible \(\mathfrak{g}\)-module \(L(\lambda)\) (quotient of Verma module)
 - A \(\mathfrak{g}\)-module \(V\) is integrable if \(V=\oplus_{\lambda\in \mathfrak{h}^{*}}V_{\lambda}\) and if \(e_i : V\to V\) and \(f_i : V\to V\) are locally nilpotent for all \(i=0,1,\cdots, r\)
 - \(\Lambda\in \mathfrak{h}^{*}\) is dominant integral if \(\Lambda(\mathfrak{h}_i)\in \mathbb{Z}_{\geq 0},\, i=0,1,\cdots,r\)
 - let \(P_{+}\) be the set of dominant integral weights, i.e. \(\{\Lambda\in \mathfrak{h}^{*}|\Lambda=\sum_{i=0}^{l}\lambda_{i}\Lambda_i+\xi \delta, \lambda_i \in\mathbb{Z}_{\geq 0},\xi \in \mathbb{C}\} \)
 
- thm
 
Let \(V\) be an irreducible \(\mathfrak{g}\)-module in a certain category \(\mathcal{O}\). Then \(V=L(\Lambda)\) for some \(\Lambda\in \mathfrak{h}^{*}\) and \(L(\Lambda)\) is integrable if and only if \(\Lambda\in P_{+}\)
- why care irreducible and integrable representation? Weyl's character formula holds
 - character of \(L(\Lambda)\)
 
\[\operatorname{ch} L(\Lambda):=\sum_{\lambda\in \mathfrak{h}^{*}}\operatorname{mult}_{\Lambda}(\lambda) e^{\lambda}\]
- thm (Weyl-Kac formula)
 
Let \(\Lambda\in P_{+}\). Then \[ \operatorname{ch} L(\Lambda)=\frac{\sum_{w\in W} (-1)^{\ell(w)}w(e^{\Lambda+\rho})}{\sum_{w\in W} (-1)^{\ell(w)}w(e^{\rho})} \]
- remark
 
For actual computation of \(m_{\lambda} = \operatorname{mult}_{\lambda}(\lambda)\), more practical to use Freudenthal multiplicity formula \[ (|\Lambda+\rho|^2-|\lambda+\rho|^2)m_{\lambda}=2\sum_{\alpha\in \Delta_{+}}\sum_{j\geq 1}(\operatorname{mult} \alpha)(\lambda+j\alpha|\alpha)m_{\lambda+j\alpha} \]
string functions
- String functions and branching functions
 - Fix \(\Lambda\in P_{+}^{k}\)
 
- def
 
For each \(\lambda\in \mathfrak{h}^{*}\), the string function \(c_{\lambda }^{\Lambda}\) is \[ c_{\lambda }^{\Lambda}=e^{-m_{\Lambda,\lambda}\delta}\sum_{n=-\infty}^{\infty}\operatorname{mult}_{\Lambda}(\lambda-n\delta)e^{-n \delta} \] where \(m_{\Lambda}=\frac{(\Lambda+\rho)^2}{2(k+h^{\vee})}-\frac{\rho^2}{2h^{\vee}}\) and \(m_{\Lambda,\lambda}=m_{\Lambda}-\frac{\lambda^2}{2k}\)
- note that \(m_{\Lambda}=h_{\Lambda}-\frac{c(k)}{24}+\xi\) where \(h_{\Lambda}=\frac{(\bar{\Lambda}+2\bar{\rho}|\bar{\Lambda})}{2(k+h^{\vee})}\) and \(c(k)=\frac{k}{k+h^{\vee}}\dim \mathfrak{\overline{g}}\) (these number frequently appear in rep. theory of Virasoro algebra)
 
- remarks
 
- modular form of weight \(-r/2\) after setting \(q:=e^{-\delta}\)
 - an explicit expression for the string functions is not known in general
 - the few that are known were guessed using the modular transformations
 - \(c_{\lambda }^{\Lambda}=c_{w\lambda }^{\Lambda}\) for \(w\in W\)
 - Theta functions in Kac-Moody algebras
 - for each \(\lambda\in P^k\), define the theta function as
 
\[ \Theta_{\lambda}= e^{-\frac{|\lambda|^2\delta}{2k}}\sum_{\gamma \in M}e^{t_{\gamma}(\lambda)}=e^{k\Lambda_0}\sum_{\gamma\in M+\overline{\lambda}/k}e^{-\frac{1}{2}k|\gamma|^2 \delta + k \gamma} \]
- A weight \(\lambda\) of \(L(\Lambda)\) is maximal if \(\lambda+\delta\) is not a weight
 - the set \(\max(\Lambda)\) of maximal weights is stable under \(W\)
 
- thm
 
\[ e^{-m_{\Lambda}\delta}\operatorname{ch} L(\Lambda)=\sum_{\lambda}c^{\Lambda}_{\lambda }\Theta_{\lambda} \]
- proof
 
\[ \begin{aligned} \operatorname{ch} L(\Lambda)&=\sum_{\lambda\in \max{L(\Lambda)}}\sum_{n=0}^{\infty}\operatorname{mult}_{\Lambda}(\lambda-n\delta)e^{\lambda-n \delta} && \text{(any weight \(\mu\] is of the form <math>\lambda-n \delta\) for some unique \(\lambda, n\))} \\ &=\sum_{\lambda\in \max{L(\Lambda)}/T} \left(\sum_{\gamma\in M}e^{t_{\gamma}(\lambda)}\right)\left(\sum_{n=0}^{\infty}\operatorname{mult}_{\Lambda}(\lambda-n\delta)e^{-n\delta}\right)\\ &=\sum_{\lambda\in \max{L(\Lambda)}/T} e^{m_{\Lambda}\delta}c^{\Lambda}_{\lambda}\Theta_{\lambda} \end{aligned} </math> ■
asymptotic growth of coefficients
- modularity of \(c_{\lambda }^{\Lambda}\) implies
 
- thm (Kac-Peterson)
 
Let \(\Lambda\in P_{k}^{+},\, \lambda\in \max(\Lambda)\). As \(n\to \infty\), \[ \log (\operatorname{mult}_{\Lambda}(\lambda-n\delta))\sim (\frac{2c(k)\pi^2n}{3})^{1/2} \]
conjectural formula for string functions
- Fermionic formula for string functions and parafermion characters
 - denote the level by \(\ell\in \mathbb{Z}\) and assume \(\ell\geq 2\)
 - \(H_\ell=\{(a,m)|a=1,\cdots, r, 1\leq m \leq t_a \ell-1\}\)
 - let
 
\[ K^{m n}_{a b} = \Bigl(\hbox{min}(t_bm, t_an) - {m n\over \ell}\Bigr) (\alpha_a \vert \alpha_b) \]
- conjecture [Kuniba-Nakanishi-Suzuki 93]
 
We have \begin{equation}\label{qkns} c^{\ell\Lambda_0}_\lambda(q)\cdot \eta(\tau)^r= \sum_{\{(N^{(a)}_m)\}}\frac{q^{\frac{1}{2}\sum_{(a,m), (b,n) \in H_\ell} K^{mn}_{ab}N^{(a)}_mN^{(b)}_n}} {\prod_{(a,m) \in H_\ell}(1-q)(1-q^2)\cdots (1-q^{N^{(a)}_m})} \end{equation} up to a rational power of \(q\), where \(\eta\) is the Dedekind eta function .
The outer sum is over \(N^{(a)}_m \in \Z_{\ge 0}\) such that \[\sum_{(a,m) \in H_\ell}mN^{(a)}_m\overline{\alpha_a} \equiv \overline{\lambda} \mod \ell M.\]
example
- let \(\mathfrak{g}=A_1\)
 
- thm [Lepowski-Primc 1985]
 
\[ c^{\ell\Lambda_0}_{\ell\Lambda_0}(\tau)\cdot \eta(\tau)=\sum_{(N_1,\dots,N_{\ell-1})\in \mathbb{Z}_{\geq 0}^{\ell-1}}\frac{q^{\sum_{n,m=1}^{\ell-1} N_n N_m (\min (n,m) -\frac{nm}{\ell})}} {\prod_{m=1}^{\ell-1}(1-q)\cdots(1-q^{N_m})} \] where the sum is under the constraint \( \sum_{m=1}^{\ell-1} m N_m \equiv 0 \ \mathrm{mod}\ \ell\).
evidence
- compare the asymptotic behavior of \ref{qkns} as \(t\to 0\) with \(q=e^{-t}\)
 - LHS of \ref{qkns} \(\exp(\frac{\pi^2(c(\ell)-r)}{6t})\)
 - RHS of \ref{qkns} \(\exp(\frac{\sum_{(a,m)\in H_\ell} L(x_{m}^{(a)})}{t})\)
 
where \(0<x_{m}^{(a)}<1\) is the solution of the system of equations \[ x_{m}^{(a)} = \prod_{(b,n)\in H_{\ell}}(1-x_{n}^{(b)})^{K_{ab}^{mn}},\, (a,m)\in H_{\ell} \] and \(L\) is the Rogers dilogarithm function \[ L(x) = \operatorname{Li}_ 2(x)+\frac{1}{2}\log x\log (1-x),\, 0<x<1 \] \[ \operatorname{Li}_ 2(x)= \sum_{n=1}^\infty {x^n \over n^2},\, 0<x<1 \]
- thm (Chapoton, Nakanishi)
 
\[ \sum_{(a,m)\in H_\ell} L(x_{m}^{(a)}) = \frac{\pi^2}{6}(c(\ell)-r) \]
- proof uses Y-systems and cluster algebras
 
example
- \(\overline{\mathfrak{g}} = B_2\), level \(\ell = 2\), rank \(r=2\)
 - \(t_1=1,t_2=2\)
 - \(H_{\ell} = \{(1,1),(2,1),(2,2),(2,3)\}\)
 - dual Coxeter number \[h^{\vee}=3\]
 - \(\dim \overline{\mathfrak{g}}=10\)
 - \(c(\ell)-r = 4-2=2\)
 - \(K = \left( \begin{array}{cccc} 2 & -1 & -2 & -1 \\ -1 & 3 & 2 & 1 \\ -2 & 2 & 4 & 2 \\ -1 & 1 & 2 & 3 \\ \end{array} \right)/2\)
 - equation for \(x^{(a)}_m\)
 
\[ \begin{aligned} x^{(1)}_1 & = (1-x^{(1)}_1)(1-x^{(2)}_1)^{-1/2}(1-x^{(2)}_2)^{-1}(1-x^{(2)}_3)^{-1/2} \\ x^{(2)}_1 & = (1-x^{(1)}_1)^{-1/2}(1-x^{(2)}_1)^{3/2}(1-x^{(2)}_2)^{1}(1-x^{(2)}_3)^{1/2}\\ x^{(2)}_2 & = \dots \\ x^{(2)}_3 & = \dots \\ \end{aligned} \]
- \(x^{(1)}_1= 3/4,x^{(2)}_1= 2/5,x^{(2)}_2= 4/9,x^{(2)}_3= 2/5\)
 
\[ L\left(\frac{3}{4}\right)+2 L\left(\frac{2}{5}\right)+L\left(\frac{4}{9}\right) = \frac{2\pi^2}{6} \]
quantum affine algebras and KR modules
- Q. is there more representation theoretic way to describe \(x^{(a)}_m\)?
 - A. these numbers can be obtained from the quantum dimensions of Kirillov-Reshetikhin modules
 - \(\exists\) bij. between iso. classes of fin.-dim'l irr. reps of \(\uqg\) and the set of \(I\)-tuples \(\mathbf{P}=(P_i)_{i\in I}\) of polys \(P_i\in \mathbb{C}[z]\) with \(P_i(0)=1\), called Drinfeld poly.
 - KR module \(W^{(a)}_{m}(u)\) with \(a\in I\), \(m\in \mathbb{Z}_{\geq 0}\) and \(u\in \mathbb{C}^{\times}\) is associated with Drinfeld polynomials \(\mathbf{P}=(P_i)_{i\in I}\) of the form
 
\[ P_i(z) = \begin{cases} \prod _{s=1}^m \left(1- z u q_{a}^{2(s-1)}\right), & \text{if \(i=a\]}\\
1, & \text{otherwise} \\ 
\end{cases} \) where \(q_{a} = q^{t/t_a}\) and \(t=\max_{a\in I}t_a\).
- The quantum dimension of irr. h.w. \(U_q(\overline{\mathfrak{g}})\)-modules \(L(\lambda)\) at level \(k\) is
 
\[ \frac{\prod_{\alpha\in \Delta_{+}}\sin \frac{\pi(\lambda+\rho|\alpha)}{h^{\vee}+k}}{ \prod_{\in \Delta_{+}}\sin \frac{\pi (\rho|\alpha)}{h^{\vee}+k}}. \]
- recovers dimension as \(k\to \infty\) (qdim is an alg. int. not necessarily positive)
 - regarding \(W^{(a)}_{m}(u)\) as \(U_q(\overline{\mathfrak{g}})\), obtain quantum dimension of a KR module
 
- thm (L.)
 
Fix level \(\ell\geq 2\). Let \(Q_{m}^{(a)}\) be the qdim of \(W^{(a)}_{m}(u)\) at level \(\ell\). Then \(Q_{m}^{(a)}\) with \((a,m)\in H_{\ell}\) is positive, \(Q_{t_a\ell}^{(a)}=1\), and \(x^{(a)}_m= 1-\frac{Q_{m-1}^{(a)}Q_{m+1}^{(a)}}{(Q_{m}^{(a)})^2}\).
- need fusion ring
 
example
- \(\overline{\mathfrak{g}} = B_2\), level \(\ell = 2\), rank \(r=2\)
 - \(Q_{m}^{(1)} = 1,2,1\) for \(m=0,1,2\)
 - \(Q_{m}^{(2)} = 1,\sqrt{5},3,\sqrt{5},1\) for \(m=0,1,2,3,4\)
 
memo
\[ \operatorname{mult}_{\Lambda}(\lambda-n\delta)\sim (\text{const})\times n^{-(1/4)(r+3)}e^{4\pi (a n)^{1/2}} \]