"Complex hyperbolic geometry"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
imported>Pythagoras0  | 
				Pythagoras0 (토론 | 기여)   | 
				||
| 1번째 줄: | 1번째 줄: | ||
==introduction==  | ==introduction==  | ||
| − | * smallest volume of a closed, complex hyperbolic 2-manifold is   | + | * smallest volume of a closed, complex hyperbolic 2-manifold is <math>8\pi^2</math>  | 
| − | * the smallest volume of a cusped (and so of any) complex hyperbolic 2-manifold is   | + | * the smallest volume of a cusped (and so of any) complex hyperbolic 2-manifold is <math>8\pi^2/3</math>  | 
==minimal volume cupsed orbifolds==  | ==minimal volume cupsed orbifolds==  | ||
| − | * there are two cusped, complex hyperbolic orbifolds with volume   | + | * there are two cusped, complex hyperbolic orbifolds with volume <math>\pi^2/27</math>  | 
* Eisenstein-Picard lattice  | * Eisenstein-Picard lattice  | ||
* Falbel, Elisha, and John R. Parker. 2006. “The Geometry of the Eisenstein-Picard Modular Group.” Duke Mathematical Journal 131 (2): 249–289. doi:10.1215/S0012-7094-06-13123-X.  | * Falbel, Elisha, and John R. Parker. 2006. “The Geometry of the Eisenstein-Picard Modular Group.” Duke Mathematical Journal 131 (2): 249–289. doi:10.1215/S0012-7094-06-13123-X.  | ||
2020년 11월 14일 (토) 01:12 기준 최신판
introduction
- smallest volume of a closed, complex hyperbolic 2-manifold is \(8\pi^2\)
 - the smallest volume of a cusped (and so of any) complex hyperbolic 2-manifold is \(8\pi^2/3\)
 
minimal volume cupsed orbifolds
- there are two cusped, complex hyperbolic orbifolds with volume \(\pi^2/27\)
 - Eisenstein-Picard lattice
 - Falbel, Elisha, and John R. Parker. 2006. “The Geometry of the Eisenstein-Picard Modular Group.” Duke Mathematical Journal 131 (2): 249–289. doi:10.1215/S0012-7094-06-13123-X.
 - Zhao, Tiehong. 2011. “A Minimal Volume Arithmetic Cusped Complex Hyperbolic Orbifold.” Mathematical Proceedings of the Cambridge Philosophical Society 150 (2): 313–342. doi:10.1017/S0305004110000526.
 
books
- Goldman, William M. 1999. Complex Hyperbolic Geometry. Oxford Mathematical Monographs. New York: The Clarendon Press Oxford University Press. http://www.ams.org/mathscinet-getitem?mr=1695450.
 - complex Kleinian groups
 
expositions
- Traces in complex hyperbolic geometry
 - Parker, John R. 2009. “Complex Hyperbolic Lattices.” In Discrete Groups and Geometric Structures, 501:1–42. Contemp. Math. Providence, RI: Amer. Math. Soc. http://www.ams.org/mathscinet-getitem?mr=2581913.
 
articles
- Parker, John R. 1998. “On the Volumes of Cusped, Complex Hyperbolic Manifolds and Orbifolds.” Duke Mathematical Journal 94 (3): 433–464. doi:10.1215/S0012-7094-98-09418-2.
 - Hersonsky, Sa’ar, and Frédéric Paulin. 1996. “On the Volumes of Complex Hyperbolic Manifolds.” Duke Mathematical Journal 84 (3): 719–737. doi:10.1215/S0012-7094-96-08422-7.