"Siegel–Veech constant"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 (section 'articles' added) |
imported>Pythagoras0 |
||
(같은 사용자의 중간 판 3개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
+ | ==articles== | ||
+ | * Camilo Ramirez Maluendas, Ferran Valdez, Veech groups of infinite genus surfaces, http://arxiv.org/abs/1603.00503v1 | ||
+ | * Chenxi Wu, Lattice Surfaces and smallest triangles, http://arxiv.org/abs/1512.00908v3 | ||
* Eskin, Alex, and Anton Zorich. “Volumes of Strata of Abelian Differentials and Siegel-Veech Constants in Large Genera.” arXiv:1507.05296 [math], July 19, 2015. http://arxiv.org/abs/1507.05296. | * Eskin, Alex, and Anton Zorich. “Volumes of Strata of Abelian Differentials and Siegel-Veech Constants in Large Genera.” arXiv:1507.05296 [math], July 19, 2015. http://arxiv.org/abs/1507.05296. | ||
+ | * Elise Goujard, Siegel-Veech constants for strata of moduli spaces of quadratic differentials, Geometric And Functional Analysis, 2015, 25 (5), pp.1440-1492, http://arxiv.org/abs/1405.5899v4 | ||
* Lelievre, Samuel. “Siegel-Veech Constants in H(2).” Geometry & Topology 10, no. 2 (September 12, 2006): 1157–72. doi:10.2140/gt.2006.10.1157. | * Lelievre, Samuel. “Siegel-Veech Constants in H(2).” Geometry & Topology 10, no. 2 (September 12, 2006): 1157–72. doi:10.2140/gt.2006.10.1157. | ||
− | + | [[분류:migrate]] | |
− | |||
− | |||
− |
2020년 11월 13일 (금) 16:23 기준 최신판
articles
- Camilo Ramirez Maluendas, Ferran Valdez, Veech groups of infinite genus surfaces, http://arxiv.org/abs/1603.00503v1
- Chenxi Wu, Lattice Surfaces and smallest triangles, http://arxiv.org/abs/1512.00908v3
- Eskin, Alex, and Anton Zorich. “Volumes of Strata of Abelian Differentials and Siegel-Veech Constants in Large Genera.” arXiv:1507.05296 [math], July 19, 2015. http://arxiv.org/abs/1507.05296.
- Elise Goujard, Siegel-Veech constants for strata of moduli spaces of quadratic differentials, Geometric And Functional Analysis, 2015, 25 (5), pp.1440-1492, http://arxiv.org/abs/1405.5899v4
- Lelievre, Samuel. “Siegel-Veech Constants in H(2).” Geometry & Topology 10, no. 2 (September 12, 2006): 1157–72. doi:10.2140/gt.2006.10.1157.