"Verma modules"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(사용자 2명의 중간 판 5개는 보이지 않습니다)
14번째 줄: 14번째 줄:
 
:<math>E v_j=a_jv_{j-1}</math>
 
:<math>E v_j=a_jv_{j-1}</math>
 
* we get the following conditions
 
* we get the following conditions
$$
+
:<math>
 
\begin{align}
 
\begin{align}
 
a_j b_{j-1}-a_{j+1} b_j+c_j=0 \\
 
a_j b_{j-1}-a_{j+1} b_j+c_j=0 \\
20번째 줄: 20번째 줄:
 
b_j \left(-c_j+c_{j+1}+2\right)=0
 
b_j \left(-c_j+c_{j+1}+2\right)=0
 
\end{align}
 
\end{align}
$$
+
</math>
* Fix $c_j=\lambda-2j$. Then as long as $b_j a_{j+1}-b_{j-1} a_{j}=\lambda -2j$ is satisfied, we get a $U$-module structure on the space spanned by <math>\{v_j|j\in \mathbb{Z}\}</math>
+
* Fix <math>c_j=\lambda-2j</math>. Then as long as <math>b_j a_{j+1}-b_{j-1} a_{j}=\lambda -2j</math> is satisfied, we get a <math>U</math>-module structure on the space spanned by <math>\{v_j|j\in \mathbb{Z}\}</math>
  
 
===symmetrical choice===
 
===symmetrical choice===
30번째 줄: 30번째 줄:
  
 
==semi-infinite case : Verma module==
 
==semi-infinite case : Verma module==
* How to construct a representation  $V(\lambda)$ with basis <math>\{v_j|j\geq 0\}</math>
+
* How to construct a representation  <math>V(\lambda)</math> with basis <math>\{v_j|j\geq 0\}</math>
 
* <math>\lambda\in \mathbb{F}</math> 에 대하여, highest weight vector <math>v_0</math> 를 정의
 
* <math>\lambda\in \mathbb{F}</math> 에 대하여, highest weight vector <math>v_0</math> 를 정의
 
:<math>Ev_0=0</math>:<math>Hv_0=\lambda  v_0</math>
 
:<math>Ev_0=0</math>:<math>Hv_0=\lambda  v_0</math>
38번째 줄: 38번째 줄:
  
 
==finite representation==
 
==finite representation==
* <math>\{v_j|j\geq 0\}</math> 가 생성하는 벡터공간  $V(\lambda)$ 이 유한차원인 L-모듈이 되려면, <math>\lambda\in\mathbb{Z}, \lambda\geq 0</math> 이 만족되어야 한다
+
* <math>\{v_j|j\geq 0\}</math> 가 생성하는 벡터공간  <math>V(\lambda)</math> 이 유한차원인 L-모듈이 되려면, <math>\lambda\in\mathbb{Z}, \lambda\geq 0</math> 이 만족되어야 한다
  
 +
 +
 +
==maps between Verma modules==
 +
 +
*  2 conditions to have non-zero homomorphisms <math>V_{\lambda}\to V_{\mu}</math> between two Verma modules
 +
** <math>\lambda+\rho, \mu+\rho</math> are in the same orbit of Weyl group
 +
** <math>V_{\lambda}\leq V_{\mu}</math>, i.e. <math>\lambda = \mu -\sum \alpha</math>, where the sum is over some positive roots.
 +
===example===
 +
* SL2
 +
** <math>\lambda = \mu -2n</math>, <math>n=0,1,2,\cdots</math>
 +
** <math>(\lambda+1)^2 = (\mu+1)^2</math>
 +
 +
==composition series of Verma modules==
 +
;thm
 +
The Verma module <math>M(\lambda)</math> has a finite composition series
 +
:<math>
 +
M(\lambda)=N_0\supset N_1\supset N_2\supset \cdots N_{r}=O
 +
</math>
 +
where each <math>N_i</math> is a submodule of <math>M(\lambda)</math> and <math>N_{i+1}</math> is a maximal submodule of <math>N_i</math>. Moreover, <math>N_i/N_{i+1}</math> is isomorphic to <math>L(w\cdot \lambda)</math> for some <math>w\in W</math>.
 +
 +
==action of center on Verma modules==
 +
* check
 +
 +
 +
==maximal submodule of Verma modules==
 +
* Maximal Submodule of <math>M(\lambda), \lambda \in \Lambda+</math> (see 2.6 of Humphreys)
  
 
==related items==
 
==related items==
52번째 줄: 78번째 줄:
 
==articles==
 
==articles==
 
* Xiao, Wei. ‘Differential Equations and Singular Vectors in Verma Modules’. arXiv:1503.06385 [math], 22 March 2015. http://arxiv.org/abs/1503.06385.
 
* Xiao, Wei. ‘Differential Equations and Singular Vectors in Verma Modules’. arXiv:1503.06385 [math], 22 March 2015. http://arxiv.org/abs/1503.06385.
* Xu, Xiaoping. ‘Differential-Operator Representations of $S_n$ and Singular Vectors in Verma Modules’. arXiv:0903.4239 [math], 25 March 2009. http://arxiv.org/abs/0903.4239.
+
* Xu, Xiaoping. ‘Differential-Operator Representations of <math>S_n</math> and Singular Vectors in Verma Modules’. arXiv:0903.4239 [math], 25 March 2009. http://arxiv.org/abs/0903.4239.
 
* Fuchs, Dmitry, and Constance Wilmarth. ‘Projections of Singular Vectors of Verma Modules over Rank 2 Kac-Moody Lie Algebras’. Symmetry, Integrability and Geometry: Methods and Applications, 27 August 2008. doi:10.3842/SIGMA.2008.059.
 
* Fuchs, Dmitry, and Constance Wilmarth. ‘Projections of Singular Vectors of Verma Modules over Rank 2 Kac-Moody Lie Algebras’. Symmetry, Integrability and Geometry: Methods and Applications, 27 August 2008. doi:10.3842/SIGMA.2008.059.
 
* Chari, Vyjayanthi. ‘Annihilators of Verma Modules for Kac-Moody Lie Algebras’. Inventiones Mathematicae 81, no. 1 (1985): 47–58. doi:10.1007/BF01388771.
 
* Chari, Vyjayanthi. ‘Annihilators of Verma Modules for Kac-Moody Lie Algebras’. Inventiones Mathematicae 81, no. 1 (1985): 47–58. doi:10.1007/BF01388771.
58번째 줄: 84번째 줄:
 
* Van den Hombergh, A. ‘Note on a Paper by Bernšteĭn, Gel'fand, and Gel'fand on Verma Modules’. Nederl. Akad. Wetensch. Proc. Ser. A 77, Indag. Math. 36 (1974): 352–56.
 
* Van den Hombergh, A. ‘Note on a Paper by Bernšteĭn, Gel'fand, and Gel'fand on Verma Modules’. Nederl. Akad. Wetensch. Proc. Ser. A 77, Indag. Math. 36 (1974): 352–56.
 
* Malikov, F. G., B. L. Feigin, and D. B. Fuks. ‘Singular Vectors in Verma Modules over Kac—Moody Algebras’. Functional Analysis and Its Applications 20, no. 2 (1 April 1986): 103–13. doi:10.1007/BF01077264.
 
* Malikov, F. G., B. L. Feigin, and D. B. Fuks. ‘Singular Vectors in Verma Modules over Kac—Moody Algebras’. Functional Analysis and Its Applications 20, no. 2 (1 April 1986): 103–13. doi:10.1007/BF01077264.
* Bernšteĭn, I. N., I. M. Gel'fand, and S. I. Gel'fand. ‘Differential Operators on the Base Affine Space and a Study of $\mathfrak{g}$-Modules’. In Lie Groups and Their Representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971), 21–64. Halsted, New York, 1975. http://www.ams.org/mathscinet-getitem?mr=0578996.
+
* Bernšteĭn, I. N., I. M. Gel'fand, and S. I. Gel'fand. ‘Differential Operators on the Base Affine Space and a Study of <math>\mathfrak{g}</math>-Modules’. In Lie Groups and Their Representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971), 21–64. Halsted, New York, 1975. http://www.ams.org/mathscinet-getitem?mr=0578996.
 
* Bernšteĭn, I. N., I. M. Gel'fand, and S. I. Gel'fand. ‘Structure of Representations That Are Generated by Vectors of Highest Weight’. Akademija Nauk SSSR. Funkcional\cprime Nyi Analiz I Ego Priloženija 5, no. 1 (1971): 1–9.
 
* Bernšteĭn, I. N., I. M. Gel'fand, and S. I. Gel'fand. ‘Structure of Representations That Are Generated by Vectors of Highest Weight’. Akademija Nauk SSSR. Funkcional\cprime Nyi Analiz I Ego Priloženija 5, no. 1 (1971): 1–9.
 
* Verma, Daya-Nand. ‘Structure of Certain Induced Representations of Complex Semisimple Lie Algebras’. Bulletin of the American Mathematical Society 74 (1968): 160–66.
 
* Verma, Daya-Nand. ‘Structure of Certain Induced Representations of Complex Semisimple Lie Algebras’. Bulletin of the American Mathematical Society 74 (1968): 160–66.
66번째 줄: 92번째 줄:
 
[[분류:quantum groups]]
 
[[분류:quantum groups]]
 
[[분류:Lie theory]]
 
[[분류:Lie theory]]
 +
[[분류:migrate]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q7921510 Q7921510]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'verma'}, {'LEMMA': 'module'}]

2021년 2월 17일 (수) 01:23 기준 최신판

introduction

  • The study of Verma modules was initiated by Verma [V] who showed that any nonzero homomorphism between Verma modules is injective and occurs with multiplicity one.
  • He also found a sufficient condition for the existence of nontrivial homomorphism between Verma modules and conjectured that this condition is also necessary.
  • The conjecture was ultimately proved by Bernstein-Gelfand-Gelfand [BGG1] who introduced the well-known category O to study representations of complex semismiple Lie algebras [BGG2].
  • Geometric representation theory


infinite in both direction

  • How to construct a representation with basis \(\{v_j|j\in \mathbb{Z}\}\)

brute force

  • impose the following conditions

\[H v_j=c_j v_j\] \[F v_j=b_jv_{j+1}\] \[E v_j=a_jv_{j-1}\]

  • we get the following conditions

\[ \begin{align} a_j b_{j-1}-a_{j+1} b_j+c_j=0 \\ a_j \left(c_{j-1}-c_j-2\right)=0\\ b_j \left(-c_j+c_{j+1}+2\right)=0 \end{align} \]

  • Fix \(c_j=\lambda-2j\). Then as long as \(b_j a_{j+1}-b_{j-1} a_{j}=\lambda -2j\) is satisfied, we get a \(U\)-module structure on the space spanned by \(\{v_j|j\in \mathbb{Z}\}\)

symmetrical choice

\[H v_j=(\lambda -2j)v_j\] \[F v_j=(j-\frac{\lambda }{2})v_{j+1}\] \[E v_j=(\frac{\lambda }{2}-j)v_{j-1}\]


semi-infinite case : Verma module

  • How to construct a representation \(V(\lambda)\) with basis \(\{v_j|j\geq 0\}\)
  • \(\lambda\in \mathbb{F}\) 에 대하여, highest weight vector \(v_0\) 를 정의

\[Ev_0=0\]\[Hv_0=\lambda v_0\]

  • impose the following conditions

\[H v_j=(\lambda -2j)v_j\]\[F v_j=(j+1)v_{j+1}\]\[E v_j=(\lambda -j+1)v_{j-1}\]


finite representation

  • \(\{v_j|j\geq 0\}\) 가 생성하는 벡터공간 \(V(\lambda)\) 이 유한차원인 L-모듈이 되려면, \(\lambda\in\mathbb{Z}, \lambda\geq 0\) 이 만족되어야 한다


maps between Verma modules

  • 2 conditions to have non-zero homomorphisms \(V_{\lambda}\to V_{\mu}\) between two Verma modules
    • \(\lambda+\rho, \mu+\rho\) are in the same orbit of Weyl group
    • \(V_{\lambda}\leq V_{\mu}\), i.e. \(\lambda = \mu -\sum \alpha\), where the sum is over some positive roots.

example

  • SL2
    • \(\lambda = \mu -2n\), \(n=0,1,2,\cdots\)
    • \((\lambda+1)^2 = (\mu+1)^2\)

composition series of Verma modules

thm

The Verma module \(M(\lambda)\) has a finite composition series \[ M(\lambda)=N_0\supset N_1\supset N_2\supset \cdots N_{r}=O \] where each \(N_i\) is a submodule of \(M(\lambda)\) and \(N_{i+1}\) is a maximal submodule of \(N_i\). Moreover, \(N_i/N_{i+1}\) is isomorphic to \(L(w\cdot \lambda)\) for some \(w\in W\).

action of center on Verma modules

  • check


maximal submodule of Verma modules

  • Maximal Submodule of \(M(\lambda), \lambda \in \Lambda+\) (see 2.6 of Humphreys)

related items


computational resource

articles

  • Xiao, Wei. ‘Differential Equations and Singular Vectors in Verma Modules’. arXiv:1503.06385 [math], 22 March 2015. http://arxiv.org/abs/1503.06385.
  • Xu, Xiaoping. ‘Differential-Operator Representations of \(S_n\) and Singular Vectors in Verma Modules’. arXiv:0903.4239 [math], 25 March 2009. http://arxiv.org/abs/0903.4239.
  • Fuchs, Dmitry, and Constance Wilmarth. ‘Projections of Singular Vectors of Verma Modules over Rank 2 Kac-Moody Lie Algebras’. Symmetry, Integrability and Geometry: Methods and Applications, 27 August 2008. doi:10.3842/SIGMA.2008.059.
  • Chari, Vyjayanthi. ‘Annihilators of Verma Modules for Kac-Moody Lie Algebras’. Inventiones Mathematicae 81, no. 1 (1985): 47–58. doi:10.1007/BF01388771.
  • Duflo, Michel. ‘Construction of Primitive Ideals in an Enveloping Algebra’. In Lie Groups and Their Representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971), 77–93. Halsted, New York, 1975. http://www.ams.org/mathscinet-getitem?mr=0399194.
  • Van den Hombergh, A. ‘Note on a Paper by Bernšteĭn, Gel'fand, and Gel'fand on Verma Modules’. Nederl. Akad. Wetensch. Proc. Ser. A 77, Indag. Math. 36 (1974): 352–56.
  • Malikov, F. G., B. L. Feigin, and D. B. Fuks. ‘Singular Vectors in Verma Modules over Kac—Moody Algebras’. Functional Analysis and Its Applications 20, no. 2 (1 April 1986): 103–13. doi:10.1007/BF01077264.
  • Bernšteĭn, I. N., I. M. Gel'fand, and S. I. Gel'fand. ‘Differential Operators on the Base Affine Space and a Study of \(\mathfrak{g}\)-Modules’. In Lie Groups and Their Representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971), 21–64. Halsted, New York, 1975. http://www.ams.org/mathscinet-getitem?mr=0578996.
  • Bernšteĭn, I. N., I. M. Gel'fand, and S. I. Gel'fand. ‘Structure of Representations That Are Generated by Vectors of Highest Weight’. Akademija Nauk SSSR. Funkcional\cprime Nyi Analiz I Ego Priloženija 5, no. 1 (1971): 1–9.
  • Verma, Daya-Nand. ‘Structure of Certain Induced Representations of Complex Semisimple Lie Algebras’. Bulletin of the American Mathematical Society 74 (1968): 160–66.
  • [V] Verma, Structure of certain induced representations of complex semisimple Lie algebras, Ph.D. thesis, Yale Univ. 1966.

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'verma'}, {'LEMMA': 'module'}]