"Non-holomorphic modular forms"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
Pythagoras0 (토론 | 기여) |
||
(같은 사용자의 중간 판 하나는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
==weight 2 Eisenstein series== | ==weight 2 Eisenstein series== | ||
− | * <math>k=1</math>인 경우의 아이젠슈타인급수는 위에서 얻은 푸리에 급수를 이용하여 정의 | + | * <math>k=1</math>인 경우의 아이젠슈타인급수는 위에서 얻은 푸리에 급수를 이용하여 정의<math>G_{2}(\tau) = \zeta(2) \left(1-24\sum_{n=1}^{\infty} \sigma_{1}(n)q^{n} \right)</math> |
− | * 원래의 정의와 비슷하게 쓰려면 절대수렴하지 않는 급수 다음과 같이 덧셈의 순서를 따름 | + | * 원래의 정의와 비슷하게 쓰려면 절대수렴하지 않는 급수 다음과 같이 덧셈의 순서를 따름<math>G_{2}(\tau) = \frac{1}{2}\sum_{n\neq 0} \frac{1}{n^2}+\frac{1}{2}\sum_{m\neq0}\sum_{n\in\mathbb{Z}} \frac{1}{(m\tau+n)^{2}}</math> |
− | * 정규 아이젠슈타인 급수 | + | * 정규 아이젠슈타인 급수<math>E_{2}(\tau) = 1-24\sum_{n=1}^{\infty} \sigma_{1}(n)q^{n}</math> |
− | * modularity | + | * modularity<math>G_{2} \left( \frac{ a\tau +b}{ c\tau + d} \right) = (c\tau +d)^{2} G_{2}(\tau)-\pi i c(c\tau+d)</math> |
− | + | ||
− | + | ||
==E2 as a non-holomorphic modular form== | ==E2 as a non-holomorphic modular form== | ||
− | * <math>\tau = x+ iy</math>, <math>y > 0 </math>에 대하여 다음과 정의된 함수는 모듈라 성질을 가짐 | + | * <math>\tau = x+ iy</math>, <math>y > 0 </math>에 대하여 다음과 정의된 함수는 모듈라 성질을 가짐<math>G^{*}_{2}(\tau) = G_{2}(\tau)-\frac{\pi}{2y}</math><math>E^{*}_{2}(\tau) = E_{2}(\tau)-\frac{3}{\pi y}</math> |
− | * obtaing modularity losing holomorphicity | + | * obtaing modularity losing holomorphicity |
− | + | ||
− | + | ||
==Zagier's function== | ==Zagier's function== | ||
24번째 줄: | 24번째 줄: | ||
* [[2518886/attachments/1125570|Cox_on_Hurwitz_class_number.pdf]] (Cox's book 319p) | * [[2518886/attachments/1125570|Cox_on_Hurwitz_class_number.pdf]] (Cox's book 319p) | ||
− | * Zagier's paper | + | * Zagier's paper |
** [[2518886/attachments/1114996|4371_001.pdf]] | ** [[2518886/attachments/1114996|4371_001.pdf]] | ||
− | * Zagier-Hirzebruch function | + | * Zagier-Hirzebruch function |
** [http://www.springerlink.com/content/tj087l782j164m50/ Intersection numbers of curves on Hibert modular surfaces and modular forms of Nebentypus] | ** [http://www.springerlink.com/content/tj087l782j164m50/ Intersection numbers of curves on Hibert modular surfaces and modular forms of Nebentypus] | ||
** function with coefficients as Hurwitz class numbers | ** function with coefficients as Hurwitz class numbers | ||
** [[2518886/attachments/1114356|zagier_hirzebruch.pdf]] | ** [[2518886/attachments/1114356|zagier_hirzebruch.pdf]] | ||
− | * [http://www.springerlink.com/content/lk767l65118h115h/ Sums involving the values at negative integers of L-functions of quadratic characters] | + | * [http://www.springerlink.com/content/lk767l65118h115h/ Sums involving the values at negative integers of L-functions of quadratic characters] |
− | ** | + | ** Henri Cohen, 1975 |
2020년 12월 28일 (월) 04:23 기준 최신판
weight 2 Eisenstein series
- \(k=1\)인 경우의 아이젠슈타인급수는 위에서 얻은 푸리에 급수를 이용하여 정의\(G_{2}(\tau) = \zeta(2) \left(1-24\sum_{n=1}^{\infty} \sigma_{1}(n)q^{n} \right)\)
- 원래의 정의와 비슷하게 쓰려면 절대수렴하지 않는 급수 다음과 같이 덧셈의 순서를 따름\(G_{2}(\tau) = \frac{1}{2}\sum_{n\neq 0} \frac{1}{n^2}+\frac{1}{2}\sum_{m\neq0}\sum_{n\in\mathbb{Z}} \frac{1}{(m\tau+n)^{2}}\)
- 정규 아이젠슈타인 급수\(E_{2}(\tau) = 1-24\sum_{n=1}^{\infty} \sigma_{1}(n)q^{n}\)
- modularity\(G_{2} \left( \frac{ a\tau +b}{ c\tau + d} \right) = (c\tau +d)^{2} G_{2}(\tau)-\pi i c(c\tau+d)\)
E2 as a non-holomorphic modular form
- \(\tau = x+ iy\), \(y > 0 \)에 대하여 다음과 정의된 함수는 모듈라 성질을 가짐\(G^{*}_{2}(\tau) = G_{2}(\tau)-\frac{\pi}{2y}\)\(E^{*}_{2}(\tau) = E_{2}(\tau)-\frac{3}{\pi y}\)
- obtaing modularity losing holomorphicity
Zagier's function
- Hurwitz class numbers
- Cox_on_Hurwitz_class_number.pdf (Cox's book 319p)
- Zagier's paper
- Zagier-Hirzebruch function
- Intersection numbers of curves on Hibert modular surfaces and modular forms of Nebentypus
- function with coefficients as Hurwitz class numbers
- zagier_hirzebruch.pdf
- Sums involving the values at negative integers of L-functions of quadratic characters
- Henri Cohen, 1975