"Affine sl(2)"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여)   | 
				|||
| (사용자 3명의 중간 판 66개는 보이지 않습니다) | |||
| 1번째 줄: | 1번째 줄: | ||
| − | + | ==introduction==  | |
| + | * affine sl(2) <math>A^{(1)}_1</math>  | ||
| + | * {{수학노트|url=Sl(2)의_유한차원_표현론}}  | ||
| + | |||
| − | + | ==construction from semisimple Lie algebra==  | |
| − | <math>  | + | * this is borrowed from [[affine Kac-Moody algebra]]  | 
| + | * Let <math>\mathfrak{g}</math> be a semisimple Lie algebra with root system <math>\Phi</math> and the invariant form <math>\langle \cdot,\cdot \rangle</math>  | ||
| + | * say <math>\mathfrak{g}=A_1</math>,  <math>\Phi=\{\alpha,-\alpha\}</math>  | ||
| + | *  Cartan matrix<math>\mathbf{A} = \begin{pmatrix} 2 \end{pmatrix}</math>  | ||
| + | *  Find the highest root  <math>\alpha</math>  | ||
| + | *  Add another simple root <math>\alpha_0</math> to the root system <math>\Phi</math> which is <math>\alpha_0=-\alpha</math>, but we regard this as an independent one now.  | ||
| + | *  Construct a new Cartan matrix<math>A' = \begin{pmatrix} 2 & -2  \\ -2 & 2  \end{pmatrix}</math>  | ||
| + | *  Note that this matrix has rank 1 since <math>(1,1)</math> belongs to the null space  | ||
| + | *  construct a Lie algebra from the new Cartan matrix <math>A'</math>  | ||
| + | *  Add a outer derivation<math>d=-l_0</math> to compensate the degeneracy of the Cartan matrix  | ||
| + | :<math>\begin{pmatrix} 2 & -2 & 1\\ -2 & 2 &0 \\ 1 &0 & 0  \end{pmatrix}</math>  | ||
| − | + | ==basic quantities==  | |
| − | <  | + | *  <math>a_i=1</math>  | 
| + | *  <math>c_i=a_i^{\vee}=1</math>  | ||
| + | *  <math>a_{ij}</math>  | ||
| + | *  coxeter number 2  | ||
| + | *  dual Coxeter number 2  | ||
| + | *  Weyl vector  | ||
| − | + | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | ||
| − | + | ==root systems==  | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
* <math>\Phi=\{\alpha+n\delta|\alpha\in\Phi^{0},n\in\mathbb{Z}\}\cup \{n\delta|n\in\mathbb{Z},n\neq 0\}</math>  | * <math>\Phi=\{\alpha+n\delta|\alpha\in\Phi^{0},n\in\mathbb{Z}\}\cup \{n\delta|n\in\mathbb{Z},n\neq 0\}</math>  | ||
| − | *  real roots  | + | *  real roots  | 
| − | ** <math>\{\alpha+n\delta|\alpha\in\Phi^{0},n\in\mathbb{Z}\}</math  | + | ** <math>\{\alpha+n\delta|\alpha\in\Phi^{0},n\in\mathbb{Z}\}</math>  | 
| − | *  imaginary   | + | *  imaginary roots     | 
** <math>\{n\delta|n\in\mathbb{Z},n\neq 0\}</math>  | ** <math>\{n\delta|n\in\mathbb{Z},n\neq 0\}</math>  | ||
| − | ** <math>\delta=\alpha_0+\alpha_1</math  | + | ** <math>\delta=\alpha_0+\alpha_1</math>  | 
| − | *  simple roots  | + | *  simple roots  | 
| − | ** <math>\alpha_0,\alpha_1</math  | + | ** <math>\alpha_0,\alpha_1</math>  | 
| − | *  positive roots  | + | *  positive roots  | 
| − | + | :<math>\Phi^{+}=\{\alpha+n\delta|\alpha\in\Phi^{0},n>0\}\cup  (\Phi^{0})^{+}\cup \{n\delta|n\in\mathbb{Z},n> 0\}</math>  | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | ||
| − | + | ||
| − | + | ==fixing a Cartan subalgebra and its dual==  | |
| − | |||
| − | |||
| − | + | * H is a 3-dimensional space  | |
| + | *  basis of the Cartan subalgebra H (this defines C and l_0 also)  | ||
| + | :<math>h_0=C-h_1 \\  | ||
| + | h_1\\d=-l_0</math>  | ||
| + | *  basis of the dual of H : <math>\omega_0,\alpha_0,\alpha_1</math>  | ||
| + | *  pairing  | ||
| + | :<math>  | ||
| + | \begin{array}{c|ccc}  | ||
| + |  {} & \alpha _0 & \alpha _1 & \omega _0 \\  | ||
| + | \hline  | ||
| + |  h_0 & 2 & -2 & 1 \\  | ||
| + |  h_1 & -2 & 2 &0 \\  | ||
| + |  d & 1 & 0 & 0 \\  | ||
| + | \end{array}  | ||
| + | </math>  | ||
| + | *  dual basis for H : <math>\omega_0,\omega_1=\omega_0+\frac{1}{2}\alpha_1,\delta=\alpha_0+\alpha_1</math>  | ||
| + | :<math>  | ||
| + | \begin{array}{c|ccc}  | ||
| + |  {} & \omega_0 & \omega_1 & \delta \\  | ||
| + | \hline  | ||
| + |  h_0 & 1 & 0 & 0 \\  | ||
| + |  h_1 & 0 & 1 &0 \\  | ||
| + |  d & 0 & 0 & a_0=1 \\  | ||
| + | \end{array}  | ||
| + | </math>  | ||
| + | *  Weyl vector : <math>\rho=\omega_0+\omega_1=2\omega_0+\frac{1}{2}\alpha_1</math>  | ||
| + | |||
| − | + | ==killing form==  | |
| + | *  invariant symmetric non-deg bilinear forms, <math>\langle h_i,h_j\rangle =A_{ij}</math>, <math>\langle h_0,d\rangle =1</math>, <math>\langle h_1,d\rangle =0</math>, <math>\langle d,d\rangle =0</math>,   | ||
| + | *  with centers (note that <math>C=h_0+h_1</math>), <math>\langle C,h_0\rangle =0</math>, <math>\langle C,h_1\rangle =0</math>, <math>\langle C,d\rangle =1</math>,   | ||
| − | + | ||
| + | |||
| − | *   | + | ==explicit construction==  | 
| + | * start with a semisimple Lie algebra <math>\mathfrak{g}</math> with invariant form <math>\langle \cdot,\cdot\rangle </math>,  | ||
| + | * make a vector space from it,  | ||
| + | * Construct a Loop algbera <math>\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]</math>  | ||
| + | * Let <math>\alpha(m)=\alpha\otimes t^m</math>,  | ||
| + | * Add a central element to get a central extension <math>\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c</math>, and give a bracket :<math>[E(m),F(n)]=H\otimes t^{m+n}+m\delta_{m,-n}c</math>  | ||
| + | :<math>[H(m),E(n)]=2E\otimes t^{m+n}</math>  | ||
| + | :<math>[H(m),F(n)]=-2F\otimes t^{m+n}</math>  | ||
| + | :<math>[E(m),E(n)]=[F(m),F(n)]=0</math>  | ||
| + | :<math>\langle c,\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c\rangle =0</math>  | ||
| + | *  Add a derivation <math>d</math>, <math>d=t\frac{d}{dt}</math> to get <math>\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c \oplus\mathbb{C}d</math>  | ||
| + | :<math>d(\alpha(n))=n\alpha(n)</math>  | ||
| + | :<math>d(c)=0</math>  | ||
| + | :<math>\langle c,d\rangle =0</math>  | ||
| + | *  Define a Lie bracket <math>[d,x]=d(x)</math>  | ||
| − | |||
| − | + | ==level k highest weight representation==  | |
| − | + | *  integrable highest weight  | |
| − | + | :<math>\lambda=\lambda_{0}\omega_0+\lambda_{1}\omega_1,\quad \lambda_{i}\in\mathbb{N}</math>  | |
| − | + | *  level  | |
| − | + | :<math>k=\lambda_{0}+\lambda_{1}\in\mathbb{N}</math>  | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | *  integrable highest weight  | ||
| − | *  level  | ||
* therefore <math>\lambda_{0}\in\{0,1,\cdots,k\}</math>  | * therefore <math>\lambda_{0}\in\{0,1,\cdots,k\}</math>  | ||
| − | + | ||
| − | + | ||
| − | + | ===central charge===  | |
| − | |||
| − | |||
| − | |||
| − | |||
* [[unitary representations of affine Kac-Moody algebras]]  | * [[unitary representations of affine Kac-Moody algebras]]  | ||
| + | *  central charge (depends on the level only)  | ||
| + | :<math>c_{\lambda}=\frac{k}{k+h^{\vee}}\text{dim }\mathfrak{\bar{g}}</math>  | ||
| + | *  conformal weight  | ||
| + | :<math>h_{\lambda}=\frac{(\lambda|\lambda+2\rho)}{2(k+h^{\vee})}</math>  | ||
| + | *  definition of conformal anomaly  | ||
| + | :<math>m_{\Lambda}=\frac{(\Lambda+\rho)^2}{2(k+h^{\vee})}-\frac{\rho^2}{2h^{\vee}}</math>  | ||
| + | *  strange formula  | ||
| + | :<math>\frac{\langle \rho,\rho \rangle}{2h^{\vee}}=\frac{\operatorname{dim}\mathfrak{g}}{24}</math>  | ||
| + | *  very strange formula  | ||
| + | *  conformal anomaly  | ||
| + | :<math>m_{\Lambda}=\frac{(\Lambda+\rho)^2}{2(k+h^{\vee})}-\frac{\rho^2}{2h^{\vee}}=h_{\lambda}-\frac{c_{\lambda}}{24}</math>  | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | ===vertex operator construction===  | |
| − | + | ||
| − | + | ||
| − | *   | + | |
| − | *   | + | ==characters of irreducible representations==  | 
| + | * [[Weyl-Kac character formula]]  | ||
| + | :<math>  | ||
| + | \operatorname{ch} L(\lambda)=\frac{\sum_{w\in W} (-1)^{\ell(w)}e^{w\cdot \lambda}}{\prod_{\alpha>0}(1-e^{-\alpha})^{m_{\alpha}}}  | ||
| + | </math>  | ||
| + | * Let <math>M=M^{*}=\mathbb{Z}\alpha_1</math>  | ||
| + | * the affine Weyl group <math>W=t(M^{*})W^{0}</math> where <math>t(M^{*})</math> is the set <math>t_{\alpha} : H^{*} \to H^{*}</math> given by  | ||
| + | :<math>  | ||
| + | t_{\alpha}(\lambda)=\lambda+\lambda(c)\alpha-\left (\langle \lambda, \alpha \rangle +\frac{1}{2}\langle \alpha,\alpha \rangle \lambda(c) \right)\delta  | ||
| + | </math>  | ||
| + | * note that this is linear  | ||
| + | * <math>\rho=\omega_0+\omega_1=2\omega_0+\frac{1}{2}\alpha_1</math>  | ||
| + | * <math>s_{\alpha_1}(\omega_0+\omega_1)=3\omega_0-\omega_1</math>  | ||
| + | * in general  | ||
| + | :<math>  | ||
| + | s_{\alpha_0}(m\omega_0+n\omega_1)=-m \delta - m \omega_0 + (2 m + n) \omega_1\\  | ||
| + | s_{\alpha_1}(m\omega_0+n\omega_1)=(m+2n)\omega_0-n\omega_1  | ||
| + | </math>  | ||
| + | * <math>t_{n\alpha_1}\omega_0=\omega_0+n\alpha_1-n^2\delta</math>  | ||
| + | * <math>t_{n\alpha_1}\alpha_1=\alpha_1-2n\delta</math>  | ||
| + | * <math>w\in W</math> can be written as <math>(n\alpha_1,\pm 1)</math>  | ||
| − | |||
| − | + | ===denominator formula===  | |
| + | * if <math>w=(n\alpha_1,1)</math>, <math>e^{w\cdot 0}=e^{w\rho-\rho}=e^{2n\alpha_1-n(2n+1)\delta}</math>  | ||
| + | * if <math>w=(n\alpha_1,-1)</math>, <math>e^{w\cdot 0}=e^{w\rho-\rho}=e^{-(2n-1)\alpha_1-n(2n-1)\delta}</math>  | ||
| + | * let us write down the Weyl-Kac denominator formula explicitly  | ||
| + | :<math>  | ||
| + | \sum_{w\in W} (-1)^{\ell(w)}e^{w\rho-\rho} = \prod_{\alpha>0}(1-e^{-\alpha})^{m_{\alpha}}\label{WK}  | ||
| + | </math>  | ||
| + | * the LHS of \ref{WK} can be written as  | ||
| + | :<math>  | ||
| + | \begin{align}  | ||
| + | \sum_{w\in W} (-1)^{\ell(w)}e^{w\rho-\rho}&=\sum_{n}e^{2n\alpha_1-n(2n+1)\delta}-\sum_{n}e^{-(2n-1)\alpha_1-n(2n-1)\delta}\\  | ||
| + | & =\sum_{n}z^{-2n}q^{n(2n+1)}-\sum_{n}z^{2n-1}q^{n(2n-1)}\\  | ||
| + | & =\sum_{m}(-1)^m z^{m}q^{m(m-1)/2}  | ||
| + | \end{align}  | ||
| + | </math>  | ||
| + | where <math>z=e^{-\alpha_1}</math> and <math>q=e^{-\delta}</math>  | ||
| + | * the RHS of \ref{WK} can be written as  | ||
| + | :<math>  | ||
| + | \begin{align}  | ||
| + | \prod_{\alpha\in \Phi^{+}}(1-e^{-\alpha})&=(1-e^{-\alpha_1})\prod_{n=1}^{\infty}(1-e^{-\alpha_1-n\delta})(1-e^{\alpha_1-n\delta})(1-e^{-n\delta})\\  | ||
| + | & = \prod _{n=1}^{\infty } \left(1-zq^{n-1}\right)\left(1-z^{-1}q^n\right)\left(1-q^n\right)  | ||
| + | \end{align}  | ||
| + | </math>  | ||
| + | from <math>\Phi^{+}=\{\alpha+n\delta|\alpha\in\Phi^{0},n>0\}\cup  (\Phi^{0})^{+}\cup \{n\delta|n\in\mathbb{Z},n> 0\}</math>  | ||
| + | * we obtain {{수학노트|url=자코비_삼중곱(Jacobi_triple_product)}}  | ||
| + | |||
| − | <  | + | ===basic representation===  | 
| + | * Let <math>\lambda=\omega_0</math>  | ||
| + | * let us use the Weyl-Kac formula  | ||
| + | :<math>  | ||
| + | \operatorname{ch} L(\omega_0)=\frac{\sum_{w\in W} (-1)^{\ell(w)}e^{w\cdot \lambda}}{\sum_{w\in W} (-1)^{\ell(w)}e^{w\cdot 0}}  | ||
| + | </math>  | ||
| + | * if <math>w=(n\alpha_1,1)</math>, <math>e^{w\cdot \lambda}=e^{w(\lambda+\rho)-\rho}=e^{-3 \delta  n^2+3 \alpha _1 n-\delta  n+\omega _0}</math>  | ||
| + | * if <math>w=(n\alpha_1,-1)</math>, <math>e^{w\cdot \lambda}=e^{w(\lambda+\rho)-\rho}=e^{-\alpha _1-3 \delta  n^2+3 \alpha _1 n+\delta  n+\omega _0}</math>  | ||
| + | * we get  | ||
| + | :<math>  | ||
| + | \operatorname{ch} L(\omega_0)=\frac{\sum_{w\in W} (-1)^{\ell(w)}e^{w\cdot \lambda}}{\sum_{w\in W} (-1)^{\ell(w)}e^{w\cdot 0}}  | ||
| + | </math>  | ||
| + | * this can be rewritten as  | ||
| + | :<math>  | ||
| + | \operatorname{ch} L(\omega_0)=\frac{\sum_{\mu\in Q}e^{\omega_0+\mu-\frac{1}{2}\langle \mu,\mu \rangle \delta}}{\prod_{k>0}(1-q^k)}=\frac{e^{\omega_0}\sum _{n=-\infty }^{\infty } z^{-n} q^{n^2}}{(q;q)_{\infty }}  | ||
| + | </math>  | ||
| + | where <math>z=e^{-\alpha_1}, q = e^{−\delta}</math>.  | ||
| − | *   | + | ===highest weight representations===  | 
| − | **   | + | * level <math>k</math>  | 
| − | + | * highest weight <math>\omega=(k-l)\omega_0+l\omega_1</math>  | |
| − | + | * character  | |
| + | :<math>  | ||
| + | \chi(L(\omega))=\frac{\theta_{k+2,l+1}-\theta_{k+2,-l-1}}{\theta_{2,1}-\theta_{2,-1}}  | ||
| + | </math>  | ||
| + | where  | ||
| + | :<math>  | ||
| + | \theta_{k,l}=\sum_{r\in \mathbb{Z}+\frac{l}{2k}}e^{kr}q^{kr^2}  | ||
| + | </math>  | ||
| − | + | ==related items==  | |
| + | * [[Modular invariant partition functions of affine sl(2)]]  | ||
| + | * [[sl(2) - orthogonal polynomials and Lie theory]]  | ||
| + | * [[vertex algebras]]  | ||
| + | * [[Quantum affine sl(2)]]  | ||
| + | |||
| − | + | ==computational resource==  | |
| + | * https://docs.google.com/file/d/0B8XXo8Tve1cxMVltb0d1OUlFY00/edit  | ||
| − | + | ||
| − | + | ==books==  | |
| − | + | * Gannon 190p, 193p, 196p,371p  | |
| − | + | ||
| − | <  | + | ==articles==  | 
| + | * Zeitlin, Anton M. “On the Unitary Representations of the Affine <math>ax+b</math>-Group, <math>\widehat{sl}(2,\mathbb{R})</math> and Their Relatives.” arXiv:1509.06072 [hep-Th, Physics:math-Ph], September 20, 2015. http://arxiv.org/abs/1509.06072.  | ||
| + | * Bakalov, Bojko, and Daniel Fleisher. “Bosonizations of <math>\widehat{\mathfrak{sl}}_2</math> and Integrable Hierarchies.” arXiv:1407.5335 [math], July 20, 2014. http://arxiv.org/abs/1407.5335.  | ||
| + | * Dong, Jilan, and Naihuan Jing. 2014. “Realizations of Affine Lie Algebra A_^(1) at Negative Levels.” arXiv:1405.0339 [hep-Th], May. doi:10.1007/978-3-642-55361-5_36. http://arxiv.org/abs/1405.0339.  | ||
| + | * Lepowsky, James, and Robert Lee Wilson. 1978. “Construction of the affine Lie algebraA 1 (1)”. <em>Communications in Mathematical Physics</em> 62 (1): 43-53. doi:[http://dx.doi.org/10.1007/BF01940329 10.1007/BF01940329].  | ||
| − | + | [[분류:Lie theory]]  | |
| − | + | [[분류:migrate]]  | |
| − | |||
| − | |||
2020년 12월 28일 (월) 04:24 기준 최신판
introduction
- affine sl(2) \(A^{(1)}_1\)
 - 틀:수학노트
 
construction from semisimple Lie algebra
- this is borrowed from affine Kac-Moody algebra
 - Let \(\mathfrak{g}\) be a semisimple Lie algebra with root system \(\Phi\) and the invariant form \(\langle \cdot,\cdot \rangle\)
 - say \(\mathfrak{g}=A_1\), \(\Phi=\{\alpha,-\alpha\}\)
 - Cartan matrix\(\mathbf{A} = \begin{pmatrix} 2 \end{pmatrix}\)
 - Find the highest root \(\alpha\)
 - Add another simple root \(\alpha_0\) to the root system \(\Phi\) which is \(\alpha_0=-\alpha\), but we regard this as an independent one now.
 - Construct a new Cartan matrix\(A' = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}\)
 - Note that this matrix has rank 1 since \((1,1)\) belongs to the null space
 - construct a Lie algebra from the new Cartan matrix \(A'\)
 - Add a outer derivation\(d=-l_0\) to compensate the degeneracy of the Cartan matrix
 
\[\begin{pmatrix} 2 & -2 & 1\\ -2 & 2 &0 \\ 1 &0 & 0 \end{pmatrix}\]
basic quantities
- \(a_i=1\)
 - \(c_i=a_i^{\vee}=1\)
 - \(a_{ij}\)
 - coxeter number 2
 - dual Coxeter number 2
 - Weyl vector
 
 
 
root systems
- \(\Phi=\{\alpha+n\delta|\alpha\in\Phi^{0},n\in\mathbb{Z}\}\cup \{n\delta|n\in\mathbb{Z},n\neq 0\}\)
 - real roots
- \(\{\alpha+n\delta|\alpha\in\Phi^{0},n\in\mathbb{Z}\}\)
 
 - imaginary roots
- \(\{n\delta|n\in\mathbb{Z},n\neq 0\}\)
 - \(\delta=\alpha_0+\alpha_1\)
 
 - simple roots
- \(\alpha_0,\alpha_1\)
 
 - positive roots
 
\[\Phi^{+}=\{\alpha+n\delta|\alpha\in\Phi^{0},n>0\}\cup (\Phi^{0})^{+}\cup \{n\delta|n\in\mathbb{Z},n> 0\}\]
 
 
fixing a Cartan subalgebra and its dual
- H is a 3-dimensional space
 - basis of the Cartan subalgebra H (this defines C and l_0 also)
 
\[h_0=C-h_1 \\ h_1\\d=-l_0\]
- basis of the dual of H \[\omega_0,\alpha_0,\alpha_1\]
 - pairing
 
\[ \begin{array}{c|ccc} {} & \alpha _0 & \alpha _1 & \omega _0 \\ \hline h_0 & 2 & -2 & 1 \\ h_1 & -2 & 2 &0 \\ d & 1 & 0 & 0 \\ \end{array} \]
- dual basis for H \[\omega_0,\omega_1=\omega_0+\frac{1}{2}\alpha_1,\delta=\alpha_0+\alpha_1\]
 
\[ \begin{array}{c|ccc} {} & \omega_0 & \omega_1 & \delta \\ \hline h_0 & 1 & 0 & 0 \\ h_1 & 0 & 1 &0 \\ d & 0 & 0 & a_0=1 \\ \end{array} \]
- Weyl vector \[\rho=\omega_0+\omega_1=2\omega_0+\frac{1}{2}\alpha_1\]
 
killing form
- invariant symmetric non-deg bilinear forms, \(\langle h_i,h_j\rangle =A_{ij}\), \(\langle h_0,d\rangle =1\), \(\langle h_1,d\rangle =0\), \(\langle d,d\rangle =0\),
 - with centers (note that \(C=h_0+h_1\)), \(\langle C,h_0\rangle =0\), \(\langle C,h_1\rangle =0\), \(\langle C,d\rangle =1\),
 
 
explicit construction
- start with a semisimple Lie algebra \(\mathfrak{g}\) with invariant form \(\langle \cdot,\cdot\rangle \),
 - make a vector space from it,
 - Construct a Loop algbera \(\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]\)
 - Let \(\alpha(m)=\alpha\otimes t^m\),
 - Add a central element to get a central extension \(\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c\), and give a bracket \[[E(m),F(n)]=H\otimes t^{m+n}+m\delta_{m,-n}c\]
 
\[[H(m),E(n)]=2E\otimes t^{m+n}\] \[[H(m),F(n)]=-2F\otimes t^{m+n}\] \[[E(m),E(n)]=[F(m),F(n)]=0\] \[\langle c,\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c\rangle =0\]
- Add a derivation \(d\), \(d=t\frac{d}{dt}\) to get \(\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c \oplus\mathbb{C}d\)
 
\[d(\alpha(n))=n\alpha(n)\] \[d(c)=0\] \[\langle c,d\rangle =0\]
- Define a Lie bracket \([d,x]=d(x)\)
 
level k highest weight representation
- integrable highest weight
 
\[\lambda=\lambda_{0}\omega_0+\lambda_{1}\omega_1,\quad \lambda_{i}\in\mathbb{N}\]
- level
 
\[k=\lambda_{0}+\lambda_{1}\in\mathbb{N}\]
- therefore \(\lambda_{0}\in\{0,1,\cdots,k\}\)
 
 
 
central charge
- unitary representations of affine Kac-Moody algebras
 - central charge (depends on the level only)
 
\[c_{\lambda}=\frac{k}{k+h^{\vee}}\text{dim }\mathfrak{\bar{g}}\]
- conformal weight
 
\[h_{\lambda}=\frac{(\lambda|\lambda+2\rho)}{2(k+h^{\vee})}\]
- definition of conformal anomaly
 
\[m_{\Lambda}=\frac{(\Lambda+\rho)^2}{2(k+h^{\vee})}-\frac{\rho^2}{2h^{\vee}}\]
- strange formula
 
\[\frac{\langle \rho,\rho \rangle}{2h^{\vee}}=\frac{\operatorname{dim}\mathfrak{g}}{24}\]
- very strange formula
 - conformal anomaly
 
\[m_{\Lambda}=\frac{(\Lambda+\rho)^2}{2(k+h^{\vee})}-\frac{\rho^2}{2h^{\vee}}=h_{\lambda}-\frac{c_{\lambda}}{24}\]
 
vertex operator construction
characters of irreducible representations
\[ \operatorname{ch} L(\lambda)=\frac{\sum_{w\in W} (-1)^{\ell(w)}e^{w\cdot \lambda}}{\prod_{\alpha>0}(1-e^{-\alpha})^{m_{\alpha}}} \]
- Let \(M=M^{*}=\mathbb{Z}\alpha_1\)
 - the affine Weyl group \(W=t(M^{*})W^{0}\) where \(t(M^{*})\) is the set \(t_{\alpha} : H^{*} \to H^{*}\) given by
 
\[ t_{\alpha}(\lambda)=\lambda+\lambda(c)\alpha-\left (\langle \lambda, \alpha \rangle +\frac{1}{2}\langle \alpha,\alpha \rangle \lambda(c) \right)\delta \]
- note that this is linear
 - \(\rho=\omega_0+\omega_1=2\omega_0+\frac{1}{2}\alpha_1\)
 - \(s_{\alpha_1}(\omega_0+\omega_1)=3\omega_0-\omega_1\)
 - in general
 
\[ s_{\alpha_0}(m\omega_0+n\omega_1)=-m \delta - m \omega_0 + (2 m + n) \omega_1\\ s_{\alpha_1}(m\omega_0+n\omega_1)=(m+2n)\omega_0-n\omega_1 \]
- \(t_{n\alpha_1}\omega_0=\omega_0+n\alpha_1-n^2\delta\)
 - \(t_{n\alpha_1}\alpha_1=\alpha_1-2n\delta\)
 - \(w\in W\) can be written as \((n\alpha_1,\pm 1)\)
 
denominator formula
- if \(w=(n\alpha_1,1)\), \(e^{w\cdot 0}=e^{w\rho-\rho}=e^{2n\alpha_1-n(2n+1)\delta}\)
 - if \(w=(n\alpha_1,-1)\), \(e^{w\cdot 0}=e^{w\rho-\rho}=e^{-(2n-1)\alpha_1-n(2n-1)\delta}\)
 - let us write down the Weyl-Kac denominator formula explicitly
 
\[ \sum_{w\in W} (-1)^{\ell(w)}e^{w\rho-\rho} = \prod_{\alpha>0}(1-e^{-\alpha})^{m_{\alpha}}\label{WK} \]
- the LHS of \ref{WK} can be written as
 
\[ \begin{align} \sum_{w\in W} (-1)^{\ell(w)}e^{w\rho-\rho}&=\sum_{n}e^{2n\alpha_1-n(2n+1)\delta}-\sum_{n}e^{-(2n-1)\alpha_1-n(2n-1)\delta}\\ & =\sum_{n}z^{-2n}q^{n(2n+1)}-\sum_{n}z^{2n-1}q^{n(2n-1)}\\ & =\sum_{m}(-1)^m z^{m}q^{m(m-1)/2} \end{align} \] where \(z=e^{-\alpha_1}\) and \(q=e^{-\delta}\)
- the RHS of \ref{WK} can be written as
 
\[ \begin{align} \prod_{\alpha\in \Phi^{+}}(1-e^{-\alpha})&=(1-e^{-\alpha_1})\prod_{n=1}^{\infty}(1-e^{-\alpha_1-n\delta})(1-e^{\alpha_1-n\delta})(1-e^{-n\delta})\\ & = \prod _{n=1}^{\infty } \left(1-zq^{n-1}\right)\left(1-z^{-1}q^n\right)\left(1-q^n\right) \end{align} \] from \(\Phi^{+}=\{\alpha+n\delta|\alpha\in\Phi^{0},n>0\}\cup (\Phi^{0})^{+}\cup \{n\delta|n\in\mathbb{Z},n> 0\}\)
- we obtain 틀:수학노트
 
basic representation
- Let \(\lambda=\omega_0\)
 - let us use the Weyl-Kac formula
 
\[ \operatorname{ch} L(\omega_0)=\frac{\sum_{w\in W} (-1)^{\ell(w)}e^{w\cdot \lambda}}{\sum_{w\in W} (-1)^{\ell(w)}e^{w\cdot 0}} \]
- if \(w=(n\alpha_1,1)\), \(e^{w\cdot \lambda}=e^{w(\lambda+\rho)-\rho}=e^{-3 \delta n^2+3 \alpha _1 n-\delta n+\omega _0}\)
 - if \(w=(n\alpha_1,-1)\), \(e^{w\cdot \lambda}=e^{w(\lambda+\rho)-\rho}=e^{-\alpha _1-3 \delta n^2+3 \alpha _1 n+\delta n+\omega _0}\)
 - we get
 
\[ \operatorname{ch} L(\omega_0)=\frac{\sum_{w\in W} (-1)^{\ell(w)}e^{w\cdot \lambda}}{\sum_{w\in W} (-1)^{\ell(w)}e^{w\cdot 0}} \]
- this can be rewritten as
 
\[ \operatorname{ch} L(\omega_0)=\frac{\sum_{\mu\in Q}e^{\omega_0+\mu-\frac{1}{2}\langle \mu,\mu \rangle \delta}}{\prod_{k>0}(1-q^k)}=\frac{e^{\omega_0}\sum _{n=-\infty }^{\infty } z^{-n} q^{n^2}}{(q;q)_{\infty }} \] where \(z=e^{-\alpha_1}, q = e^{−\delta}\).
highest weight representations
- level \(k\)
 - highest weight \(\omega=(k-l)\omega_0+l\omega_1\)
 - character
 
\[ \chi(L(\omega))=\frac{\theta_{k+2,l+1}-\theta_{k+2,-l-1}}{\theta_{2,1}-\theta_{2,-1}} \] where \[ \theta_{k,l}=\sum_{r\in \mathbb{Z}+\frac{l}{2k}}e^{kr}q^{kr^2} \]
- Modular invariant partition functions of affine sl(2)
 - sl(2) - orthogonal polynomials and Lie theory
 - vertex algebras
 - Quantum affine sl(2)
 
computational resource
 
books
- Gannon 190p, 193p, 196p,371p
 
 
articles
- Zeitlin, Anton M. “On the Unitary Representations of the Affine \(ax+b\)-Group, \(\widehat{sl}(2,\mathbb{R})\) and Their Relatives.” arXiv:1509.06072 [hep-Th, Physics:math-Ph], September 20, 2015. http://arxiv.org/abs/1509.06072.
 - Bakalov, Bojko, and Daniel Fleisher. “Bosonizations of \(\widehat{\mathfrak{sl}}_2\) and Integrable Hierarchies.” arXiv:1407.5335 [math], July 20, 2014. http://arxiv.org/abs/1407.5335.
 - Dong, Jilan, and Naihuan Jing. 2014. “Realizations of Affine Lie Algebra A_^(1) at Negative Levels.” arXiv:1405.0339 [hep-Th], May. doi:10.1007/978-3-642-55361-5_36. http://arxiv.org/abs/1405.0339.
 - Lepowsky, James, and Robert Lee Wilson. 1978. “Construction of the affine Lie algebraA 1 (1)”. Communications in Mathematical Physics 62 (1): 43-53. doi:10.1007/BF01940329.