"Hitchin system"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 2명의 중간 판 12개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5>introduction</h5>
+
==introduction==
  
 
* [[elliptic Calogero-Moser model and AGT conjecture|elliptic Calogero-Moser system]] is an example of Hitchin system.
 
* [[elliptic Calogero-Moser model and AGT conjecture|elliptic Calogero-Moser system]] is an example of Hitchin system.
5번째 줄: 5번째 줄:
 
* the spectral curve is a hyperelliptic curve (genus 2 or more)
 
* the spectral curve is a hyperelliptic curve (genus 2 or more)
  
 
+
* explicit formulas for genus 2 case
 +
* B. van Geemen,  A.J. de Jong,  "On Hitchin's connection"  J. Amer. Math. Soc. , 11  (1998)  pp. 189–228 http://dx.doi.org/10.1090/S0894-0347-98-00252-5
 +
* van Geemen, Bert, and Emma Previato. 1994. On the Hitchin System. Duke Math. J. , 85 : 3  (1996)  pp. 659–683 alg-geom/9410015 (October 14). http://arxiv.org/abs/alg-geom/9410015. 
  
explicit formulas for genus 2 case
+
  
* B. van Geemen,   A.J. de Jong,   "On Hitchin's connection"  J. Amer. Math. Soc. , 11  (1998)  pp. 189–228 http://dx.doi.org/10.1090/S0894-0347-98-00252-5
+
* van Geemen, Bert, and Emma Previato. 1994. On the Hitchin System. Duke Math. J. , 85 : 3  (1996)  pp. 659–683 alg-geom/9410015 (October 14). http://arxiv.org/abs/alg-geom/9410015.  
 
  
 
+
  
 
+
==related items==
  
 
+
  
<h5>history</h5>
+
  
* http://www.google.com/search?hl=en&tbs=tl:1&q=
+
==encyclopedia==
 
 
 
 
 
 
 
 
 
 
<h5>related items</h5>
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5>
 
  
 
* http://en.wikipedia.org/wiki/Hitchin_system
 
* http://en.wikipedia.org/wiki/Hitchin_system
 
* Hitchin system http://eom.springer.de/H/h120090.htm
 
* Hitchin system http://eom.springer.de/H/h120090.htm
* http://en.wikipedia.org/wiki/
 
* http://www.scholarpedia.org/
 
* http://www.proofwiki.org/wiki/
 
* Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]])
 
 
 
 
 
 
 
 
<h5>books</h5>
 
 
 
 
 
* [[2011년 books and articles]]
 
* http://library.nu/search?q=
 
* http://library.nu/search?q=
 
 
 
 
 
 
 
 
<h5>expositions</h5>
 
 
*  Scognamillo, Renata. 1999. A note on the complete integrability of the Hitchin system. Archiv der Mathematik 73, no. 1 (7): 50-55. doi:[http://dx.doi.org/10.1007/s000130050019 10.1007/s000130050019]. <br>  <br>
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
 
 
 
 
 
* http://www.ams.org/mathscinet
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://arxiv.org/
 
* http://www.pdf-search.org/
 
* http://pythagoras0.springnote.com/
 
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
 
* http://dx.doi.org/10.1090/S0894-0347-98-00252-5
 
 
 
 
 
 
 
 
<h5>question and answers(Math Overflow)</h5>
 
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
 
 
 
 
 
 
 
  
<h5>blogs</h5>
 
  
* 구글 블로그 검색<br>
+
   
**  http://blogsearch.google.com/blogsearch?q=<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
* http://ncatlab.org/nlab/show/HomePage
 
  
 
+
==expositions==
  
 
+
*  Scognamillo, Renata. 1999. A note on the complete integrability of the Hitchin system. Archiv der Mathematik 73, no. 1 (7): 50-55. doi:[http://dx.doi.org/10.1007/s000130050019 10.1007/s000130050019]. 
  
<h5>experts on the field</h5>
+
  
* http://arxiv.org/
+
  
 
+
==articles==
 +
* Ward, R. S. ‘Geometry of Solutions of Hitchin Equations on R^2’. arXiv:1504.05746 [math-Ph, Physics:nlin], 22 April 2015. http://arxiv.org/abs/1504.05746.
 +
* Andersen, Jørgen Ellegaard, and Niels Leth Gammelgaard. “The Hitchin-Witten Connection and Complex Quantum Chern-Simons Theory.” arXiv:1409.1035 [math], September 3, 2014. http://arxiv.org/abs/1409.1035.
  
 
+
  
<h5>links</h5>
+
[[분류:integrable systems]]
 +
[[분류:math and physics]]
 +
[[분류:migrate]]
  
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
+
==메타데이터==
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
+
===위키데이터===
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
+
* ID :  [https://www.wikidata.org/wiki/Q8009704 Q8009704]
* http://functions.wolfram.com/
+
===Spacy 패턴 목록===
 +
* [{'LOWER': 'hitchin'}, {'LEMMA': 'system'}]

2021년 2월 17일 (수) 01:16 기준 최신판

introduction




related items

encyclopedia



expositions

  • Scognamillo, Renata. 1999. A note on the complete integrability of the Hitchin system. Archiv der Mathematik 73, no. 1 (7): 50-55. doi:10.1007/s000130050019.



articles

  • Ward, R. S. ‘Geometry of Solutions of Hitchin Equations on R^2’. arXiv:1504.05746 [math-Ph, Physics:nlin], 22 April 2015. http://arxiv.org/abs/1504.05746.
  • Andersen, Jørgen Ellegaard, and Niels Leth Gammelgaard. “The Hitchin-Witten Connection and Complex Quantum Chern-Simons Theory.” arXiv:1409.1035 [math], September 3, 2014. http://arxiv.org/abs/1409.1035.

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'hitchin'}, {'LEMMA': 'system'}]