"Real forms of a Lie algebra"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 (새 문서: ==introduction== * a complex Lie algbera L can be regarded as a real Lie algebra <math>L^{R}</math> * if <math>L^{R}=L_0\oplus i L_0</math> for some real subalgebra <math>L_0</math> *...) |
Pythagoras0 (토론 | 기여) |
||
(사용자 2명의 중간 판 2개는 보이지 않습니다) | |||
10번째 줄: | 10번째 줄: | ||
* of all the real forms of a given simple complex Lie algebra, there is precisely one which is the real Lie algebra of a compact Lie group | * of all the real forms of a given simple complex Lie algebra, there is precisely one which is the real Lie algebra of a compact Lie group | ||
* a real Lie algebra which is the Lie algebra of some compact group is called compact | * a real Lie algebra which is the Lie algebra of some compact group is called compact | ||
+ | [[분류:migrate]] | ||
+ | |||
+ | ==메타데이터== | ||
+ | ===위키데이터=== | ||
+ | * ID : [https://www.wikidata.org/wiki/Q7301156 Q7301156] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'real'}, {'LEMMA': 'form'}] |
2021년 2월 17일 (수) 01:14 기준 최신판
introduction
- a complex Lie algbera L can be regarded as a real Lie algebra \(L^{R}\)
- if \(L^{R}=L_0\oplus i L_0\) for some real subalgebra \(L_0\)
- \(L_0\) is called a real from of \(L\)
- split real forms
- compact real forms
compact real forms
- of all the real forms of a given simple complex Lie algebra, there is precisely one which is the real Lie algebra of a compact Lie group
- a real Lie algebra which is the Lie algebra of some compact group is called compact
메타데이터
위키데이터
- ID : Q7301156
Spacy 패턴 목록
- [{'LOWER': 'real'}, {'LEMMA': 'form'}]