"Six-vertex model and Quantum XXZ Hamiltonian"의 두 판 사이의 차이
imported>Pythagoras0  | 
				Pythagoras0 (토론 | 기여)   | 
				||
| (사용자 2명의 중간 판 32개는 보이지 않습니다) | |||
| 1번째 줄: | 1번째 줄: | ||
==introduction==  | ==introduction==  | ||
| + | * six-vertex model, also called ice-type model, R model, Rys model  | ||
| + | * The Hamiltonian of Hisenberg XXZ spin chain and the six-vertex transfer matrix have the same eigenvectors  | ||
| + | ** {{수학노트|url=하이젠베르크_스핀_1/2_XXZ_모형}}  | ||
| + | * [[Bethe ansatz]] can be applied to solve the model  | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
==types of six vertex models==  | ==types of six vertex models==  | ||
| − | |||
* on a square lattice with periodic boundary conditions  | * on a square lattice with periodic boundary conditions  | ||
| − | *  on a square lattice with domain wall boundary conditions  | + | *  on a square lattice with domain wall boundary conditions  | 
** this is related to the [[alternating sign matrix theorem|Alternating sign matrix theorem]]  | ** this is related to the [[alternating sign matrix theorem|Alternating sign matrix theorem]]  | ||
| − | |||
| − | |||
| − | |||
==transfer matrix==  | ==transfer matrix==  | ||
| − | |||
* borrowed from [[transfer matrix in statistical mechanics]]  | * borrowed from [[transfer matrix in statistical mechanics]]  | ||
| − | * transfer matrix is builtup from matrices of   | + | * transfer matrix is builtup from matrices of Boltzmann weights  | 
* finding eigenvalues and eigenvectors of transfer matrix is crucial  | * finding eigenvalues and eigenvectors of transfer matrix is crucial  | ||
* Bethe ansatz equation is used to find the eigenvectors and eigenvalues of the transfer matrix  | * Bethe ansatz equation is used to find the eigenvectors and eigenvalues of the transfer matrix  | ||
* partition function = trace of power of transfer matrices  | * partition function = trace of power of transfer matrices  | ||
* so the partition function  is calculated in terms of the eigenvalues of the transfer matrix  | * so the partition function  is calculated in terms of the eigenvalues of the transfer matrix  | ||
| − | *  then the problem of solving the model is reduced to the computation of this trace  | + | *  then the problem of solving the model is reduced to the computation of this trace  | 
| − | ==integrability of the model==  | + | ==integrability of the model and the Yang-Baxter equation==  | 
| − | *   | + | * <math>T(u)</math> transfer matrix  | 
| − | *   | + | * <math>\log T(u)=\sum_{n=0}^{\infty}Q_{n}u^n</math>  | 
| − | * here   | + | * here <math>Q_1</math> plays the role of the Hamiltonian  | 
* necessary and sufficient codntion to have infinitely many conserved quantities  | * necessary and sufficient codntion to have infinitely many conserved quantities  | ||
| − | + | :<math>[T(u), T(v)]=0</math>  | |
| − | which implies   | + | which implies <math>[Q_n,Q_m]=0</math>  | 
| − | * in order to have   | + | * in order to have <math>[T(u), T(v)]=0</math>, the [[Yang-Baxter equation (YBE)]] must be satisfied  | 
| − | ==R-matrix and   | + | ===R-matrix and Boltzmann weights===  | 
| − | |||
| − | |||
* [[R-matrix]]    | * [[R-matrix]]    | ||
| − | + | :<math>  | |
R(u,\eta)=\rho\left(  | R(u,\eta)=\rho\left(  | ||
\begin{array}{cccc}  | \begin{array}{cccc}  | ||
| 58번째 줄: | 46번째 줄: | ||
\end{array}  | \end{array}  | ||
\right)  | \right)  | ||
| − | + | </math>  | |
| + | |||
| + | * multiplicative form of [[S-matrix of the quantum sine-Gordon model]]  | ||
| + | :<math>  | ||
| + | \check{R}(x)=  | ||
| + | \left(  | ||
| + | \begin{array}{cccc}  | ||
| + |  x-q^2 & 0 & 0 & 0 \\  | ||
| + |  0 & 1-q^2 & q (x-1) & 0 \\  | ||
| + |  0 & q (x-1) & \left(1-q^2\right) x & 0 \\  | ||
| + |  0 & 0 & 0 & x-q^2 \\  | ||
| + | \end{array}  | ||
| + | \right)  | ||
| + | </math>  | ||
==transfer matrix formalism and coordinate Bethe ansatz==  | ==transfer matrix formalism and coordinate Bethe ansatz==  | ||
| − | * <math>M=N^{2}</math> number of molecules  | + | * <math>M=N^{2}</math> number of molecules  | 
| − | *   | + | * one can regard the up(or down) arrows in a row as 'particles'  | 
| − | *   | + | * because of the ice rule, their number is conserved and one can try [[Bethe ansatz]] for the eigenvectors of the transfer matrix  | 
| − | * <math>f(x_1,\cdots,x_n)</math> be the   | + | * let <math>f(x_1,\cdots,x_n)</math> be the coefficient in an eigenvector <math>v</math> of the state with up arrows at the sites <math>x_ 1<x_ 2<\cdots<x_n</math> so that  | 
| − | *   | + | :<math>v(k_1,\cdots,k_n)=  | 
| − | <math>f(x_ 1,\cdots,x_n)=\sum_{P}A (P)\exp(i\sum_{j=1}^{n}x_jk _{P_j})</math>  | + | \sum_{\substack{\mathbf{x}=(x_ 1,x_ 2,\cdots,x_n) \\ x_ 1<x_ 2<\cdots<x_n}} f(x_1,\cdots,x_n|k_1,\cdots,k_n)\sigma_{-}^{(x_1)}\cdots\sigma_{-}^{(x_n)}|0\rangle </math>  | 
| − | *   | + | * Bethe ansatz suggests the following form for <math>f</math>  | 
| − | :<math>\exp(ik_jn)=\prod_{  | + | :<math>f(x_ 1,\cdots,x_n)=\sum_{P\in S_n}A (P)\exp(i\sum_{j=1}^{n}x_jk _{P_j})</math>  | 
| − | :<math>B(k,q)=-\frac{1+e^{ik}e^{iq}-e^{ik}}{1+e^{ik}e^{iq}-e^{iq}}</math  | + | * Bethe ansatz equation for wave numbers : there are n conditions  | 
| − | *   | + | :<math>\exp(ik_jn)=\prod_{\ell \neq j}B(k_j,k_\ell)=\prod_{\ell=1}^{n}B(k_j,k_\ell),\quad \forall j=1,\cdots, n</math> where    | 
| − | :<math>\lambda=\frac{1+e^{i(k_{1}+\cdots+k_{n})}}{\prod_{j=1}^{n}1-e^{ik_{j}}}=\frac{1+e^{i(k_{1}+\cdots+k_{n})}}{(1-e^{ik_{j}})\cdots(1-e^{ik_{j}})}</math  | + | :<math>B(k,q)=-\frac{1+e^{ik}e^{iq}-e^{ik}}{1+e^{ik}e^{iq}-e^{iq}}</math>  | 
| + | * eigenvalue <math>\lambda</math> of <math>v</math> is given by  | ||
| + | :<math>\lambda=\frac{1+e^{i(k_{1}+\cdots+k_{n})}}{\prod_{j=1}^{n}1-e^{ik_{j}}}=\frac{1+e^{i(k_{1}+\cdots+k_{n})}}{(1-e^{ik_{j}})\cdots(1-e^{ik_{j}})}</math>  | ||
| − | ==anistropic one-dimensional Heisenberg   | + | ==anistropic one-dimensional Heisenberg XXZ model==  | 
* [[Heisenberg spin chain model]]  | * [[Heisenberg spin chain model]]  | ||
| − | *  Hamiltonian of XXZ model   | + | *  Hamiltonian of XXZ model with  anisotropic parameter <math>\Delta=1/2</math>  | 
| − | :<math>\hat H = -\sum_{j=1}^{N} (\sigma_j^x \sigma_{j+1}^x +\sigma_j^y \sigma_{j+1}^y + \Delta \sigma_j^z \sigma_{j+1}^z)=-\sum_{j=1}^{N} (\sigma_j^x \sigma_{j+1}^x +\sigma_j^y \sigma_{j+1}^y + \frac{1}{2} \sigma_j^z \sigma_{j+1}^z)</math  | + | :<math>\hat H = -\sum_{j=1}^{N} (\sigma_j^x \sigma_{j+1}^x +\sigma_j^y \sigma_{j+1}^y + \Delta \sigma_j^z \sigma_{j+1}^z)=-\sum_{j=1}^{N} (\sigma_j^x \sigma_{j+1}^x +\sigma_j^y \sigma_{j+1}^y + \frac{1}{2} \sigma_j^z \sigma_{j+1}^z)</math>  | 
*  two body scattering term  | *  two body scattering term  | ||
:<math>s_{jl}=1-2\Delta e^{ik_l}+ e^{ik_l+ik_j}=1-e^{ik_l}+ e^{ik_l+ik_j}</math>  | :<math>s_{jl}=1-2\Delta e^{ik_l}+ e^{ik_l+ik_j}=1-e^{ik_l}+ e^{ik_l+ik_j}</math>  | ||
| 85번째 줄: | 88번째 줄: | ||
:<math>\exp(ik_jN)=(-1)^{N-1}\prod_{l=1}^{N}\exp(-i\theta(k_j,k_l))</math>  | :<math>\exp(ik_jN)=(-1)^{N-1}\prod_{l=1}^{N}\exp(-i\theta(k_j,k_l))</math>  | ||
where <math>\theta(p,q)</math> is defined as  | where <math>\theta(p,q)</math> is defined as  | ||
| − | :<math>\exp(-i\theta(p,q))=\frac{1-2\Delta e^{ip}+e^{i(p+q)}}{1-2\Delta e^{iq}+e^{i(p+q)}}=\frac{1-e^{ip}+e^{i(p+q)}}{1- e^{iq}+e^{i(p+q)}}</math  | + | :<math>\exp(-i\theta(p,q))=\frac{1-2\Delta e^{ip}+e^{i(p+q)}}{1-2\Delta e^{iq}+e^{i(p+q)}}=\frac{1-e^{ip}+e^{i(p+q)}}{1- e^{iq}+e^{i(p+q)}}</math>  | 
*  fundamental equation  | *  fundamental equation  | ||
| − | :<math>k_jN=2\pi I(k_j)+\sum_{l=1}^{N}\theta(k_j,k_l)</math  | + | :<math>k_jN=2\pi I(k_j)+\sum_{l=1}^{N}\theta(k_j,k_l)</math>  | 
| − | *  eigenvalue  | + | *  eigenvalue  | 
* ground state eigenvector for Hamiltonian  is a common eigenvector although the eigenvalues are different  | * ground state eigenvector for Hamiltonian  is a common eigenvector although the eigenvalues are different  | ||
* the maximum eigenstate of the transfer matrix and the ground state of the above Hamiltonian are identical because both are characterized by the fact that <math>f(x_ 1,\cdots,x_n)>0</math>  | * the maximum eigenstate of the transfer matrix and the ground state of the above Hamiltonian are identical because both are characterized by the fact that <math>f(x_ 1,\cdots,x_n)>0</math>  | ||
| 95번째 줄: | 98번째 줄: | ||
| − | + | ==Sutherland's observation==  | |
| − | + | *  the eigenvectors of the transfer matrix depended on a,b,c only via the parameter  | |
| + | :<math>\Delta=\frac{a^2+b^2-c^2}{2ab}=\cos \eta</math>  | ||
| + | *  <math>\Delta</math> = anisotropic parameter in [[Heisenberg spin chain model]]  | ||
| − | |||
| − | *   | + | ==one-point function==  | 
| − | :<math>\  | + | * by Baxter's corner transfer matrix method, we get  | 
| − | + | :<math>  | |
| + | G'(a)=\sum_{{\mathbb{p}\in \mathcal{P}(\Lambda_0)}\atop {W(0,\mathbb{p})=a}}q^{2\sum_{k=0}^{\infty}(k+1)(H(\mathbb{p}(k+1),\mathbb{p}(k))-H(\mathbb{p}_{\Lambda_0}(k+1),\mathbb{p}_{\Lambda_0}(k)))}  | ||
| + | </math>  | ||
| + | * one can evaluate the sum  | ||
| + | :<math>  | ||
| + | G'(a)=  | ||
| + | \begin{cases}   | ||
| + |  \frac{q^{\frac{a^2}{2}}}{\prod_{n=1}^{\infty}(1-q^{2n})}, & \text{if </math>a<math> is even}\\    | ||
| + |  0, & \text{if </math>a<math> is odd} \\   | ||
| + | \end{cases}  | ||
| + | </math>  | ||
| + | :<math>  | ||
| − | ==  | + | ==thermodynamic properties==  | 
| − | + | ===entropy of two-dimensional ice===  | |
| − | + | *  entropy is given as <math>Mk\ln W</math> where M is the number of molecules and <math>W=(4/3)^{3/2}=1.53960\cdots</math>  | |
| − | |||
| − | ==free energy==  | + | ===free energy===  | 
| − | * <math>F=-kT \ln Z=-\beta \ln Z</math>  | + | * <math>F=-kT \ln Z=-\frac{1}{\beta} \ln Z</math>  | 
| − | ==partition function==  | + | ===partition function===  | 
| − | |||
| − | |||
| − | ==correlation functions==  | + | ===correlation functions===  | 
| 130번째 줄: | 142번째 줄: | ||
==computational resource==  | ==computational resource==  | ||
* https://docs.google.com/file/d/0B8XXo8Tve1cxSG5zZm80QVROMGc/edit  | * https://docs.google.com/file/d/0B8XXo8Tve1cxSG5zZm80QVROMGc/edit  | ||
| + | |||
==related items==  | ==related items==  | ||
| 135번째 줄: | 148번째 줄: | ||
* [[Bethe ansatz]]  | * [[Bethe ansatz]]  | ||
* [[Heisenberg spin chain model]]  | * [[Heisenberg spin chain model]]  | ||
| + | * [[Alternating sign matrix theorem]]  | ||
| + | * [[Proofs and Confirmation]]  | ||
* [[2D Yang-Mills gauge theory]]  | * [[2D Yang-Mills gauge theory]]  | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
==encyclopedia==  | ==encyclopedia==  | ||
| − | |||
| − | |||
* http://en.wikipedia.org/wiki/Ice-type_model  | * http://en.wikipedia.org/wiki/Ice-type_model  | ||
* http://en.wikipedia.org/wiki/Spin_ice  | * http://en.wikipedia.org/wiki/Spin_ice  | ||
| 161번째 줄: | 161번째 줄: | ||
| − | + | ==books==  | |
| − | + | * R. J. Baxter, [http://tpsrv.anu.edu.au/Members/baxter/book Exactly Solved Models in Statistical mechanics], 1982  | |
| − | |||
| − | |||
==expositions==  | ==expositions==  | ||
| − | *   | + | * http://arxiv.org/abs/1512.07955  | 
| + | * Lamers, J. “A Pedagogical Introduction to Quantum Integrability, with a View towards Theoretical High-Energy Physics.” arXiv:1501.06805 [hep-Th, Physics:math-Ph, Physics:nlin], January 27, 2015. http://arxiv.org/abs/1501.06805.  | ||
* Reshetikhin, N. 2010. “Lectures on the Integrability of the Six-vertex Model.” In Exact Methods in Low-dimensional Statistical Physics and Quantum Computing, 197–266. Oxford: Oxford Univ. Press. http://www.ams.org/mathscinet-getitem?mr=2668647.  | * Reshetikhin, N. 2010. “Lectures on the Integrability of the Six-vertex Model.” In Exact Methods in Low-dimensional Statistical Physics and Quantum Computing, 197–266. Oxford: Oxford Univ. Press. http://www.ams.org/mathscinet-getitem?mr=2668647.  | ||
| + | ** Reshetikhin, N. “Lectures on the Integrability of the 6-Vertex Model.” arXiv:1010.5031 [cond-Mat, Physics:math-Ph], October 24, 2010. http://arxiv.org/abs/1010.5031.  | ||
* T Miwa [http://www.springerlink.com/content/f9961j132852j27q/ Integrability of the Quantum XXZ Hamiltonian], 2009  | * T Miwa [http://www.springerlink.com/content/f9961j132852j27q/ Integrability of the Quantum XXZ Hamiltonian], 2009  | ||
* Tetsuo Deguchi [http://arxiv.org/abs/cond-mat/0304309 Introduction to solvable lattice models in statistical and mathematical physics], 2003  | * Tetsuo Deguchi [http://arxiv.org/abs/cond-mat/0304309 Introduction to solvable lattice models in statistical and mathematical physics], 2003  | ||
| + | * De Vega, H. J. 1993. “Bethe Ansatz and Quantum Groups.” arXiv:hep-th/9308008, August. http://arxiv.org/abs/hep-th/9308008.  | ||
| + | * Karowski, M. 1990. “Yang-Baxter Algebra — Bethe Ansatz — Conformal Quantum Field Theories — Quantum Groups.” In Quantum Groups, edited by H.-D. Doebner and J.-D. Hennig, 183–218. Lecture Notes in Physics 370. Springer Berlin Heidelberg. http://link.springer.com/chapter/10.1007/3-540-53503-9_47.  | ||
| + | * LeBowitz, J L. 1968. “Statistical Mechanics-A Review of Selected Rigorous Results.” Annual Review of Physical Chemistry 19 (1): 389–418. doi:10.1146/annurev.pc.19.100168.002133. http://www.annualreviews.org/doi/abs/10.1146/annurev.pc.19.100168.002133  | ||
| + | |||
| + | ===blogs===  | ||
* [http://paulingblog.wordpress.com/2010/08/18/a-theory-of-the-structure-of-ice/ A Theory of the Structure of Ice]  | * [http://paulingblog.wordpress.com/2010/08/18/a-theory-of-the-structure-of-ice/ A Theory of the Structure of Ice]  | ||
| − | |||
| − | |||
| − | |||
| − | |||
==articles==  | ==articles==  | ||
| + | * Reshetikhin, Nicolai, and Ananth Sridhar. “Integrability of Limit Shapes of the Six Vertex Model.” arXiv:1510.01053 [cond-Mat, Physics:hep-Th, Physics:math-Ph], October 5, 2015. http://arxiv.org/abs/1510.01053.  | ||
| + | * Kozlowski, K. K. “On Condensation Properties of Bethe Roots Associated with the XXZ Chain.” arXiv:1508.05741 [math-Ph, Physics:nlin], August 24, 2015. http://arxiv.org/abs/1508.05741.  | ||
| + | * Martins, M. J. ‘The Symmetric Six-Vertex Model and the Segre Cubic Threefold’. arXiv:1505.07418 [math-Ph], 27 May 2015. http://arxiv.org/abs/1505.07418.  | ||
| + | * Morin-Duchesne, Alexi, Jorgen Rasmussen, Philippe Ruelle, and Yvan Saint-Aubin. ‘On the Reality of Spectra of </math>\boldsymbol{U_q(sl_2)}<math>-Invariant XXZ Hamiltonians’. arXiv:1502.01859 [cond-Mat, Physics:hep-Th, Physics:math-Ph], 6 February 2015. http://arxiv.org/abs/1502.01859.  | ||
| + | * Vieira, R. S., and A. Lima-Santos. “Where Are the Roots of the Bethe Ansatz Equations?” arXiv:1502.05316 [cond-Mat, Physics:math-Ph, Physics:nlin], February 18, 2015. http://arxiv.org/abs/1502.05316.  | ||
| + | * Hamel, Angèle M., and Ronald C. King. “Tokuyama’s Identity for Factorial Schur Functions.” arXiv:1501.03561 [math], January 14, 2015. http://arxiv.org/abs/1501.03561.  | ||
| + | * Tavares, T. S., G. A. P. Ribeiro, and V. E. Korepin. “The Entropy of the Six-Vertex Model with Variety of Different Boundary Conditions.” arXiv:1501.02818 [cond-Mat, Physics:math-Ph, Physics:nlin], January 12, 2015. http://arxiv.org/abs/1501.02818.  | ||
| + | * Garbali, Alexander. ‘The Scalar Product of XXZ Spin Chain Revisited. Application to the Ground State at </math>\Delta=-1/2<math>’. arXiv:1411.2938 [math-Ph], 11 November 2014. http://arxiv.org/abs/1411.2938.  | ||
| + | * Ribeiro, G. A. P., and V. E. Korepin. “Thermodynamic Limit of the Six-Vertex Model with Reflecting End.” arXiv:1409.1212 [cond-Mat, Physics:hep-Th, Physics:math-Ph, Physics:nlin], September 3, 2014. http://arxiv.org/abs/1409.1212.  | ||
| + | * Mangazeev, Vladimir V. “Q-Operators in the Six-Vertex Model.” arXiv:1406.0662 [hep-Th, Physics:math-Ph], June 3, 2014. http://arxiv.org/abs/1406.0662.  | ||
* António, N. Cirilo, N. Manojlović, and Z. Nagy. 2013. “Trigonometric Sl(2) Gaudin Model with Boundary Terms.” arXiv:1303.2481 (March 11). http://arxiv.org/abs/1303.2481.  | * António, N. Cirilo, N. Manojlović, and Z. Nagy. 2013. “Trigonometric Sl(2) Gaudin Model with Boundary Terms.” arXiv:1303.2481 (March 11). http://arxiv.org/abs/1303.2481.  | ||
| − | *   | + | * Szabo, Richard J., and Miguel Tierz. 2011. “Two-Dimensional Yang-Mills Theory, Painleve Equations and the Six-Vertex Model”. ArXiv e-print 1102.3640. http://arxiv.org/abs/1102.3640.  | 
| + | * Deguchi, Tetsuo. 2006. “The Six-vertex Model at Roots of Unity and Some Highest Weight Representations of the </math>\rm Sl_2<math> Loop Algebra.” Annales Henri Poincaré. A Journal of Theoretical and Mathematical Physics 7 (7-8): 1531–1540. doi:[http://dx.doi.org/10.1007/s00023-006-0290- 10.1007/s00023-006-0290-8]  | ||
| + | * De Vega, H.J., and F. Woynarovich. 1985. “Method for Calculating Finite Size Corrections in Bethe Ansatz Systems: Heisenberg Chain and Six-vertex Model.” Nuclear Physics B 251: 439–456. doi:[http://dx.doi.org/10.1016/0550-3213(85)90271-8 10.1016/0550-3213(85)90271-8].  | ||
* Kazuhiko Minami, [http://dx.doi.org/10.1063/1.2890671 The free energies of six-vertex models and the n-equivalence relation]  | * Kazuhiko Minami, [http://dx.doi.org/10.1063/1.2890671 The free energies of six-vertex models and the n-equivalence relation]  | ||
| − | *   | + | * Lieb, Elliott H. 1967. “Exact Solution of the F Model of An Antiferroelectric.” Physical Review Letters 18 (24): 1046–48. doi:[http://dx.doi.org/10.1103/PhysRevLett.18.1046 10.1103/PhysRevLett.18.1046].  | 
| − | + | * Lieb, Elliott H. 1967. “Exact Solution of the Two-Dimensional Slater KDP Model of a Ferroelectric.” Physical Review Letters 19 (3): 108–10. doi:[http://dx.doi.org/10.1103/PhysRevLett.19.108 10.1103/PhysRevLett.19.108].  | |
| − | + | * Sutherland, Bill. “Exact Solution of a Two-Dimensional Model for Hydrogen-Bonded Crystals.” Physical Review Letters 19, no. 3 (July 17, 1967): 103–4. doi:10.1103/PhysRevLett.19.103.  | |
| − | + | * Lieb, Elliott H. “Exact Solution of the Problem of the Entropy of Two-Dimensional Ice.” Physical Review Letters 18, no. 17 (April 24, 1967): 692–94. doi:[http://dx.doi.org/10.1103/PhysRevLett.18.692 10.1103/PhysRevLett.18.692].  | |
| − | + | * '''[YY1966-2]''' Yang, C. N., and C. P. Yang.“One-Dimensional Chain of Anisotropic Spin-Spin Interactions. II. Properties of the Ground-State Energy Per Lattice Site for an Infinite System.” Physical Review 150, no. 1 (October 7, 1966): 327–39. doi:[http://dx.doi.org/10.1103/PhysRev.150.327 10.1103/PhysRev.150.327].  | |
| − | + | * Yang, C. N., and C. P. Yang. “One-Dimensional Chain of Anisotropic Spin-Spin Interactions.” Physics Letters 20, no. 1 (January 15, 1966): 9–10. doi:[http://dx.doi.org/10.1016/0031-9163%2866%2991024-9 10.1016/0031-9163(66)91024-9].  | |
| − | * [http://dx.doi.org/10.1103/PhysRevLett.18.692   | + | * Pauling, Linus. 1935. “The Structure and Entropy of Ice and of Other Crystals with Some Randomness of Atomic Arrangement.” Journal of the American Chemical Society 57 (12): 2680–84. doi:[http://dx.doi.org/10.1021/ja01315a102 10.1021/ja01315a102].  | 
| − | |||
| − | * '''[YY1966-2]'''  | ||
| − | |||
| − | |||
| − | |||
| − | *  | ||
| − | |||
| − | |||
| − | |||
| − | |||
[[분류:개인노트]]  | [[분류:개인노트]]  | ||
[[분류:integrable systems]]  | [[분류:integrable systems]]  | ||
[[분류:math and physics]]  | [[분류:math and physics]]  | ||
| + | [[분류:migrate]]  | ||
| + | |||
| + | ==메타데이터==  | ||
| + | ===위키데이터===  | ||
| + | * ID :  [https://www.wikidata.org/wiki/Q5985139 Q5985139]  | ||
| + | ===Spacy 패턴 목록===  | ||
| + | * [{'LOWER': 'ice'}, {'OP': '*'}, {'LOWER': 'type'}, {'LEMMA': 'model'}]  | ||
| + | * [{'LOWER': 'six'}, {'OP': '*'}, {'LOWER': 'vertex'}, {'LEMMA': 'model'}]  | ||
2021년 2월 17일 (수) 01:11 기준 최신판
introduction
- six-vertex model, also called ice-type model, R model, Rys model
 - The Hamiltonian of Hisenberg XXZ spin chain and the six-vertex transfer matrix have the same eigenvectors
 - Bethe ansatz can be applied to solve the model
 
types of six vertex models
- on a square lattice with periodic boundary conditions
 - on a square lattice with domain wall boundary conditions
- this is related to the Alternating sign matrix theorem
 
 
transfer matrix
- borrowed from transfer matrix in statistical mechanics
 - transfer matrix is builtup from matrices of Boltzmann weights
 - finding eigenvalues and eigenvectors of transfer matrix is crucial
 - Bethe ansatz equation is used to find the eigenvectors and eigenvalues of the transfer matrix
 - partition function = trace of power of transfer matrices
 - so the partition function is calculated in terms of the eigenvalues of the transfer matrix
 - then the problem of solving the model is reduced to the computation of this trace
 
integrability of the model and the Yang-Baxter equation
- \(T(u)\) transfer matrix
 - \(\log T(u)=\sum_{n=0}^{\infty}Q_{n}u^n\)
 - here \(Q_1\) plays the role of the Hamiltonian
 - necessary and sufficient codntion to have infinitely many conserved quantities
 
\[[T(u), T(v)]=0\] which implies \([Q_n,Q_m]=0\)
- in order to have \([T(u), T(v)]=0\), the Yang-Baxter equation (YBE) must be satisfied
 
R-matrix and Boltzmann weights
\[ R(u,\eta)=\rho\left( \begin{array}{cccc} \sin (u+\eta ) & 0 & 0 & 0 \\ 0 & \sin (u) & \sin (\eta ) & 0 \\ 0 & \sin (\eta ) & \sin (u) & 0 \\ 0 & 0 & 0 & \sin (u+\eta ) \end{array} \right) \]
- multiplicative form of S-matrix of the quantum sine-Gordon model
 
\[ \check{R}(x)= \left( \begin{array}{cccc} x-q^2 & 0 & 0 & 0 \\ 0 & 1-q^2 & q (x-1) & 0 \\ 0 & q (x-1) & \left(1-q^2\right) x & 0 \\ 0 & 0 & 0 & x-q^2 \\ \end{array} \right) \]
transfer matrix formalism and coordinate Bethe ansatz
- \(M=N^{2}\) number of molecules
 - one can regard the up(or down) arrows in a row as 'particles'
 - because of the ice rule, their number is conserved and one can try Bethe ansatz for the eigenvectors of the transfer matrix
 - let \(f(x_1,\cdots,x_n)\) be the coefficient in an eigenvector \(v\) of the state with up arrows at the sites \(x_ 1<x_ 2<\cdots<x_n\) so that
 
\[v(k_1,\cdots,k_n)= \sum_{\substack{\mathbf{x}=(x_ 1,x_ 2,\cdots,x_n) \\ x_ 1<x_ 2<\cdots<x_n}} f(x_1,\cdots,x_n|k_1,\cdots,k_n)\sigma_{-}^{(x_1)}\cdots\sigma_{-}^{(x_n)}|0\rangle \]
- Bethe ansatz suggests the following form for \(f\)
 
\[f(x_ 1,\cdots,x_n)=\sum_{P\in S_n}A (P)\exp(i\sum_{j=1}^{n}x_jk _{P_j})\]
- Bethe ansatz equation for wave numbers : there are n conditions
 
\[\exp(ik_jn)=\prod_{\ell \neq j}B(k_j,k_\ell)=\prod_{\ell=1}^{n}B(k_j,k_\ell),\quad \forall j=1,\cdots, n\] where \[B(k,q)=-\frac{1+e^{ik}e^{iq}-e^{ik}}{1+e^{ik}e^{iq}-e^{iq}}\]
- eigenvalue \(\lambda\) of \(v\) is given by
 
\[\lambda=\frac{1+e^{i(k_{1}+\cdots+k_{n})}}{\prod_{j=1}^{n}1-e^{ik_{j}}}=\frac{1+e^{i(k_{1}+\cdots+k_{n})}}{(1-e^{ik_{j}})\cdots(1-e^{ik_{j}})}\]
anistropic one-dimensional Heisenberg XXZ model
- Heisenberg spin chain model
 - Hamiltonian of XXZ model with anisotropic parameter \(\Delta=1/2\)
 
\[\hat H = -\sum_{j=1}^{N} (\sigma_j^x \sigma_{j+1}^x +\sigma_j^y \sigma_{j+1}^y + \Delta \sigma_j^z \sigma_{j+1}^z)=-\sum_{j=1}^{N} (\sigma_j^x \sigma_{j+1}^x +\sigma_j^y \sigma_{j+1}^y + \frac{1}{2} \sigma_j^z \sigma_{j+1}^z)\]
- two body scattering term
 
\[s_{jl}=1-2\Delta e^{ik_l}+ e^{ik_l+ik_j}=1-e^{ik_l}+ e^{ik_l+ik_j}\]
- equation satisfied by wave numbers
 
\[\exp(ik_jN)=(-1)^{N-1}\prod_{l=1}^{N}\exp(-i\theta(k_j,k_l))\] where \(\theta(p,q)\) is defined as \[\exp(-i\theta(p,q))=\frac{1-2\Delta e^{ip}+e^{i(p+q)}}{1-2\Delta e^{iq}+e^{i(p+q)}}=\frac{1-e^{ip}+e^{i(p+q)}}{1- e^{iq}+e^{i(p+q)}}\]
- fundamental equation
 
\[k_jN=2\pi I(k_j)+\sum_{l=1}^{N}\theta(k_j,k_l)\]
- eigenvalue
 - ground state eigenvector for Hamiltonian is a common eigenvector although the eigenvalues are different
 - the maximum eigenstate of the transfer matrix and the ground state of the above Hamiltonian are identical because both are characterized by the fact that \(f(x_ 1,\cdots,x_n)>0\)
 - see [YY1966-2]
 
 
Sutherland's observation
- the eigenvectors of the transfer matrix depended on a,b,c only via the parameter
 
\[\Delta=\frac{a^2+b^2-c^2}{2ab}=\cos \eta\]
- \(\Delta\) = anisotropic parameter in Heisenberg spin chain model
 
one-point function
- by Baxter's corner transfer matrix method, we get
 
\[ G'(a)=\sum_{{\mathbb{p}\in \mathcal{P}(\Lambda_0)}\atop {W(0,\mathbb{p})=a}}q^{2\sum_{k=0}^{\infty}(k+1)(H(\mathbb{p}(k+1),\mathbb{p}(k))-H(\mathbb{p}_{\Lambda_0}(k+1),\mathbb{p}_{\Lambda_0}(k)))} \]
- one can evaluate the sum
 
\[ G'(a)= \begin{cases} \frac{q^{\frac{a^2}{2}}}{\prod_{n=1}^{\infty}(1-q^{2n})}, & \text{if \]a\( is even}\\ 0, & \text{if \)a\( is odd} \\ \end{cases} \)
\[ =='"`UNIQ--h-9--QINU`"'thermodynamic properties== ==='"`UNIQ--h-10--QINU`"'entropy of two-dimensional ice=== * entropy is given as \(Mk\ln W\] where M is the number of molecules and <math>W=(4/3)^{3/2}=1.53960\cdots\)
free energy
- \(F=-kT \ln Z=-\frac{1}{\beta} \ln Z\)
 
partition function
correlation functions
computational resource
- Bethe ansatz
 - Heisenberg spin chain model
 - Alternating sign matrix theorem
 - Proofs and Confirmation
 - 2D Yang-Mills gauge theory
 
 
encyclopedia
- http://en.wikipedia.org/wiki/Ice-type_model
 - http://en.wikipedia.org/wiki/Spin_ice
 - http://en.wikipedia.org/wiki/Heisenberg_model_(quantum)
 
books
- R. J. Baxter, Exactly Solved Models in Statistical mechanics, 1982
 
expositions
- http://arxiv.org/abs/1512.07955
 - Lamers, J. “A Pedagogical Introduction to Quantum Integrability, with a View towards Theoretical High-Energy Physics.” arXiv:1501.06805 [hep-Th, Physics:math-Ph, Physics:nlin], January 27, 2015. http://arxiv.org/abs/1501.06805.
 - Reshetikhin, N. 2010. “Lectures on the Integrability of the Six-vertex Model.” In Exact Methods in Low-dimensional Statistical Physics and Quantum Computing, 197–266. Oxford: Oxford Univ. Press. http://www.ams.org/mathscinet-getitem?mr=2668647.
- Reshetikhin, N. “Lectures on the Integrability of the 6-Vertex Model.” arXiv:1010.5031 [cond-Mat, Physics:math-Ph], October 24, 2010. http://arxiv.org/abs/1010.5031.
 
 - T Miwa Integrability of the Quantum XXZ Hamiltonian, 2009
 - Tetsuo Deguchi Introduction to solvable lattice models in statistical and mathematical physics, 2003
 - De Vega, H. J. 1993. “Bethe Ansatz and Quantum Groups.” arXiv:hep-th/9308008, August. http://arxiv.org/abs/hep-th/9308008.
 - Karowski, M. 1990. “Yang-Baxter Algebra — Bethe Ansatz — Conformal Quantum Field Theories — Quantum Groups.” In Quantum Groups, edited by H.-D. Doebner and J.-D. Hennig, 183–218. Lecture Notes in Physics 370. Springer Berlin Heidelberg. http://link.springer.com/chapter/10.1007/3-540-53503-9_47.
 - LeBowitz, J L. 1968. “Statistical Mechanics-A Review of Selected Rigorous Results.” Annual Review of Physical Chemistry 19 (1): 389–418. doi:10.1146/annurev.pc.19.100168.002133. http://www.annualreviews.org/doi/abs/10.1146/annurev.pc.19.100168.002133
 
blogs
articles
- Reshetikhin, Nicolai, and Ananth Sridhar. “Integrability of Limit Shapes of the Six Vertex Model.” arXiv:1510.01053 [cond-Mat, Physics:hep-Th, Physics:math-Ph], October 5, 2015. http://arxiv.org/abs/1510.01053.
 - Kozlowski, K. K. “On Condensation Properties of Bethe Roots Associated with the XXZ Chain.” arXiv:1508.05741 [math-Ph, Physics:nlin], August 24, 2015. http://arxiv.org/abs/1508.05741.
 - Martins, M. J. ‘The Symmetric Six-Vertex Model and the Segre Cubic Threefold’. arXiv:1505.07418 [math-Ph], 27 May 2015. http://arxiv.org/abs/1505.07418.
 - Morin-Duchesne, Alexi, Jorgen Rasmussen, Philippe Ruelle, and Yvan Saint-Aubin. ‘On the Reality of Spectra of </math>\boldsymbol{U_q(sl_2)}\(-Invariant XXZ Hamiltonians’. arXiv:1502.01859 [cond-Mat, Physics:hep-Th, Physics:math-Ph], 6 February 2015. http://arxiv.org/abs/1502.01859. * Vieira, R. S., and A. Lima-Santos. “Where Are the Roots of the Bethe Ansatz Equations?” arXiv:1502.05316 [cond-Mat, Physics:math-Ph, Physics:nlin], February 18, 2015. http://arxiv.org/abs/1502.05316. * Hamel, Angèle M., and Ronald C. King. “Tokuyama’s Identity for Factorial Schur Functions.” arXiv:1501.03561 [math], January 14, 2015. http://arxiv.org/abs/1501.03561. * Tavares, T. S., G. A. P. Ribeiro, and V. E. Korepin. “The Entropy of the Six-Vertex Model with Variety of Different Boundary Conditions.” arXiv:1501.02818 [cond-Mat, Physics:math-Ph, Physics:nlin], January 12, 2015. http://arxiv.org/abs/1501.02818. * Garbali, Alexander. ‘The Scalar Product of XXZ Spin Chain Revisited. Application to the Ground State at \)\Delta=-1/2\(’. arXiv:1411.2938 [math-Ph], 11 November 2014. http://arxiv.org/abs/1411.2938. * Ribeiro, G. A. P., and V. E. Korepin. “Thermodynamic Limit of the Six-Vertex Model with Reflecting End.” arXiv:1409.1212 [cond-Mat, Physics:hep-Th, Physics:math-Ph, Physics:nlin], September 3, 2014. http://arxiv.org/abs/1409.1212. * Mangazeev, Vladimir V. “Q-Operators in the Six-Vertex Model.” arXiv:1406.0662 [hep-Th, Physics:math-Ph], June 3, 2014. http://arxiv.org/abs/1406.0662. * António, N. Cirilo, N. Manojlović, and Z. Nagy. 2013. “Trigonometric Sl(2) Gaudin Model with Boundary Terms.” arXiv:1303.2481 (March 11). http://arxiv.org/abs/1303.2481. * Szabo, Richard J., and Miguel Tierz. 2011. “Two-Dimensional Yang-Mills Theory, Painleve Equations and the Six-Vertex Model”. ArXiv e-print 1102.3640. http://arxiv.org/abs/1102.3640. * Deguchi, Tetsuo. 2006. “The Six-vertex Model at Roots of Unity and Some Highest Weight Representations of the \)\rm Sl_2<math> Loop Algebra.” Annales Henri Poincaré. A Journal of Theoretical and Mathematical Physics 7 (7-8): 1531–1540. doi:10.1007/s00023-006-0290-8
 - De Vega, H.J., and F. Woynarovich. 1985. “Method for Calculating Finite Size Corrections in Bethe Ansatz Systems: Heisenberg Chain and Six-vertex Model.” Nuclear Physics B 251: 439–456. doi:10.1016/0550-3213(85)90271-8.
 - Kazuhiko Minami, The free energies of six-vertex models and the n-equivalence relation
 - Lieb, Elliott H. 1967. “Exact Solution of the F Model of An Antiferroelectric.” Physical Review Letters 18 (24): 1046–48. doi:10.1103/PhysRevLett.18.1046.
 - Lieb, Elliott H. 1967. “Exact Solution of the Two-Dimensional Slater KDP Model of a Ferroelectric.” Physical Review Letters 19 (3): 108–10. doi:10.1103/PhysRevLett.19.108.
 - Sutherland, Bill. “Exact Solution of a Two-Dimensional Model for Hydrogen-Bonded Crystals.” Physical Review Letters 19, no. 3 (July 17, 1967): 103–4. doi:10.1103/PhysRevLett.19.103.
 - Lieb, Elliott H. “Exact Solution of the Problem of the Entropy of Two-Dimensional Ice.” Physical Review Letters 18, no. 17 (April 24, 1967): 692–94. doi:10.1103/PhysRevLett.18.692.
 - [YY1966-2] Yang, C. N., and C. P. Yang.“One-Dimensional Chain of Anisotropic Spin-Spin Interactions. II. Properties of the Ground-State Energy Per Lattice Site for an Infinite System.” Physical Review 150, no. 1 (October 7, 1966): 327–39. doi:10.1103/PhysRev.150.327.
 - Yang, C. N., and C. P. Yang. “One-Dimensional Chain of Anisotropic Spin-Spin Interactions.” Physics Letters 20, no. 1 (January 15, 1966): 9–10. doi:10.1016/0031-9163(66)91024-9.
 - Pauling, Linus. 1935. “The Structure and Entropy of Ice and of Other Crystals with Some Randomness of Atomic Arrangement.” Journal of the American Chemical Society 57 (12): 2680–84. doi:10.1021/ja01315a102.
 
메타데이터
위키데이터
- ID : Q5985139
 
Spacy 패턴 목록
- [{'LOWER': 'ice'}, {'OP': '*'}, {'LOWER': 'type'}, {'LEMMA': 'model'}]
 - [{'LOWER': 'six'}, {'OP': '*'}, {'LOWER': 'vertex'}, {'LEMMA': 'model'}]