"Representations of symmetrizable Kac-Moody algebras"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
Pythagoras0 (토론 | 기여) |
||
(사용자 2명의 중간 판 2개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
+ | ==introduction== | ||
+ | * Let <math>L(A)</math> be a symmetrizable Kac-Moody algebra | ||
+ | * the category <math>\mathcal{O}</math> | ||
+ | * Integrable modules | ||
+ | |||
+ | ==the category <math>\mathcal{O}</math>== | ||
+ | * <math>V</math> is an object in <math>\mathcal{O}</math> | ||
+ | # <math>V=\oplus_{\lambda\in \mathfrak{h}^{*}}V_{\lambda}</math> | ||
+ | # <math>\dim V_{\lambda}</math> is finite for each <math>\lambda\in \mathfrak{h}^{*}</math> | ||
+ | # there exists a finite set <math>\lambda_1,\cdots, \lambda_s\in \mathfrak{h}^{*}</math> such that each <math>\lambda</math> with <math>V_{\lambda}\neq 0</math> satisfies <math>\lambda \prec \lambda_i</math> for some <math>i\in \{1,\cdots, s\}</math> | ||
+ | |||
+ | |||
+ | ==integrable module== | ||
+ | * An <math>L(A)</math>-module <math>V</math> is called integrable if | ||
+ | :<math> | ||
+ | V=\oplus_{\lambda\in \mathfrak{h}^{*}}V_{\lambda} | ||
+ | </math> | ||
+ | and if <math>e_i : V\to V</math> and <math>f_i : V\to V</math> are locally nilpotent for all <math>i</math> | ||
+ | ;Thm | ||
+ | Let <math>L(A)</math> be a symmetrizable Kac-Moody algebra and <math>L(\lambda)</math> be an irreducible <math>L(A)</math>-module in the category <math>\mathcal{O}</math>. Then <math>L(\lambda)</math> is integrable if and only if <math>\lambda</math> is dominant and integral. | ||
+ | * [[Weyl-Kac character formula]] | ||
+ | |||
+ | |||
+ | ==related items== | ||
+ | * [[BGG category and BGG resolution]] | ||
+ | |||
+ | |||
+ | [[분류:Lie theory]] | ||
+ | [[분류:migrate]] |
2020년 11월 16일 (월) 10:07 기준 최신판
introduction
- Let \(L(A)\) be a symmetrizable Kac-Moody algebra
- the category \(\mathcal{O}\)
- Integrable modules
the category \(\mathcal{O}\)
- \(V\) is an object in \(\mathcal{O}\)
- \(V=\oplus_{\lambda\in \mathfrak{h}^{*}}V_{\lambda}\)
- \(\dim V_{\lambda}\) is finite for each \(\lambda\in \mathfrak{h}^{*}\)
- there exists a finite set \(\lambda_1,\cdots, \lambda_s\in \mathfrak{h}^{*}\) such that each \(\lambda\) with \(V_{\lambda}\neq 0\) satisfies \(\lambda \prec \lambda_i\) for some \(i\in \{1,\cdots, s\}\)
integrable module
- An \(L(A)\)-module \(V\) is called integrable if
\[ V=\oplus_{\lambda\in \mathfrak{h}^{*}}V_{\lambda} \] and if \(e_i : V\to V\) and \(f_i : V\to V\) are locally nilpotent for all \(i\)
- Thm
Let \(L(A)\) be a symmetrizable Kac-Moody algebra and \(L(\lambda)\) be an irreducible \(L(A)\)-module in the category \(\mathcal{O}\). Then \(L(\lambda)\) is integrable if and only if \(\lambda\) is dominant and integral.