"골레이 코드 (Golay code)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
|||
(사용자 2명의 중간 판 28개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
− | + | ==개요== | |
+ | * [24,12,8] 골레이 코드 <math>C</math> | ||
+ | * 유한체 <math>\mathbb{F}_2</math>위에 정의되는 선형코드 <math>C\subset \mathbb{F}_2^{24}</math> | ||
+ | * 12차원 벡터 공간을 이루며, <math>C</math>의 원소의 개수는 <math>2^{12}=4096</math> | ||
+ | * 가장 작은 길이를 갖는 코드는 길이 8 | ||
+ | * self-dual | ||
− | |||
− | + | ==codeword== | |
+ | ===weight enumerator=== | ||
+ | * <math>W_{C}(x.y)=x^{24}+759 x^{16} y^8+2576 x^{12} y^{12}+759 x^8 y^{16}+y^{24}</math> | ||
+ | * [[맥윌리엄스 항등식 (MacWilliams Identity)]]에 의해 다음이 성립 | ||
+ | :<math> | ||
+ | W_{C}(x,y)=W_{C}\left(\frac{x+y}{\sqrt{2}},\frac{x-y}{\sqrt{2}}\right) | ||
+ | </math> | ||
− | + | ===길이 8인 코드=== | |
+ | * 759개 | ||
+ | * [[슈타이너 시스템 S(5, 8, 24)]]으로 불린다 | ||
− | + | [[파일:슈타이너 시스템 S(5, 8, 24)1.png]] | |
+ | |||
− | + | ||
− | + | ==역사== | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
* http://www.google.com/search?hl=en&tbs=tl:1&q= | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
− | * [[ | + | * [[수학사 연표]] |
− | + | ||
− | |||
− | + | ==관련된 항목들== | |
+ | * [[리치 격자(Leech lattice)]] | ||
+ | * [[해밍코드(Hamming codes)]] | ||
+ | * [[슈타이너 시스템 S(5, 8, 24)]] | ||
+ | |||
− | + | ==매스매티카 파일 및 계산 리소스== | |
− | * | + | * https://docs.google.com/file/d/0B8XXo8Tve1cxY21Hc2Q3X25rbzQ/edit |
− | + | * http://mathworld.wolfram.com/GolayCode.html | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | * | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | == 노트 == | |
− | < | + | ===위키데이터=== |
+ | * ID : [https://www.wikidata.org/wiki/Q1534522 Q1534522] | ||
+ | ===말뭉치=== | ||
+ | # Recently, some table-lookup decoding algorithms (TLDAs) have been used to correct the binary Golay code.<ref name="ref_340e953f">[https://www.sciencedirect.com/science/article/pii/S1665642313715438 High-Speed Decoding of the Binary Golay Code]</ref> | ||
+ | # The problem of complete decoding the binary Golay code over error-and-erasure memoryless channels is addressed.<ref name="ref_248f9b19">[https://link.springer.com/article/10.1007/BF02997777 A decoding algorithm for the (23, 12, 7) golay code with error and erasure correction]</ref> | ||
+ | # In mathematics and electronics engineering, a binary Golay code is a type of linear error-correcting code used in digital communications.<ref name="ref_a8e218ba">[https://en.wikipedia.org/wiki/Binary_Golay_code Binary Golay code]</ref> | ||
+ | # conversely, the extended binary Golay code is obtained from the perfect binary Golay code by adding a parity bit).<ref name="ref_a8e218ba" /> | ||
+ | # Witt in 1938 published a construction of the largest Mathieu group that can be used to construct the extended binary Golay code.<ref name="ref_a8e218ba" /> | ||
+ | # Turyn's construction of 1967, "A Simple Construction of the Binary Golay Code," that starts from the Hamming code of length 8 and does not use the quadratic residues mod 23.<ref name="ref_a8e218ba" /> | ||
+ | # It has been shown in the worksheet how to implement encoding and decoding of triple error correcting (24, 12) binary Golay code.<ref name="ref_d06c6eba">[https://www.maplesoft.com/applications/view.aspx?SID=1757&view=html Extended (24, 12) Binary Golay Code: Encoding and Decoding Procedures]</ref> | ||
+ | # The automorphism group of the binary Golay code is the Mathieu group M 24 M_{24} , and the other Mathieu group are obtained as stabilisers of various sets in the Golay code.<ref name="ref_70ee6593">[https://ncatlab.org/nlab/show/binary+Golay+code binary Golay code in nLab]</ref> | ||
+ | # If we delete any one component of the vectors in the extended Golay code, we obtain the perfect binary Golay code, a 12-dimensional subspace \(W’ \subset \mathbb{F}_2^{23}\).<ref name="ref_d5754dda">[https://blogs.ams.org/visualinsight/2015/12/01/golay-code/ Golay Code]</ref> | ||
+ | # The maximum size of unrestricted binary three-error-correcting codes has been known up to the length of the binary Golay code, with two exceptions.<ref name="ref_f2f5796f">[https://link.springer.com/article/10.1007/s10623-018-0532-z The sextuply shortened binary Golay code is optimal]</ref> | ||
+ | # In the current computer-aided study, it is shown that \(A(18,8)=64\) and \(A(19,8)=128\), so an optimal code is obtained even after shortening the extended binary Golay code six times.<ref name="ref_f2f5796f" /> | ||
+ | # We provide a counterexample to show that the extended binary Golay code is not 1-perfect for the proposed poset block structures.<ref name="ref_b70cf7bd">[https://www.aimsciences.org/article/doi/10.3934/amc.2018037 Characterization of extended Hamming and Golay codes as perfect codes in poset block spaces]</ref> | ||
+ | # Two Golay codes exist—the 23-bit binary Golay code and the 11-trit ternary Golay code.<ref name="ref_8077d169">[https://royalsocietypublishing.org/doi/10.1098/rspa.2020.0187 Magic state distillation with the ternary Golay code]</ref> | ||
+ | ===소스=== | ||
+ | <references /> | ||
− | * | + | ==메타데이터== |
− | + | ===위키데이터=== | |
− | * | + | * ID : [https://www.wikidata.org/wiki/Q1534522 Q1534522] |
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'binary'}, {'LOWER': 'golay'}, {'LEMMA': 'code'}] |
2021년 2월 17일 (수) 03:59 기준 최신판
개요
- [24,12,8] 골레이 코드 \(C\)
- 유한체 \(\mathbb{F}_2\)위에 정의되는 선형코드 \(C\subset \mathbb{F}_2^{24}\)
- 12차원 벡터 공간을 이루며, \(C\)의 원소의 개수는 \(2^{12}=4096\)
- 가장 작은 길이를 갖는 코드는 길이 8
- self-dual
codeword
weight enumerator
- \(W_{C}(x.y)=x^{24}+759 x^{16} y^8+2576 x^{12} y^{12}+759 x^8 y^{16}+y^{24}\)
- 맥윌리엄스 항등식 (MacWilliams Identity)에 의해 다음이 성립
\[ W_{C}(x,y)=W_{C}\left(\frac{x+y}{\sqrt{2}},\frac{x-y}{\sqrt{2}}\right) \]
길이 8인 코드
- 759개
- 슈타이너 시스템 S(5, 8, 24)으로 불린다
역사
관련된 항목들
매스매티카 파일 및 계산 리소스
- https://docs.google.com/file/d/0B8XXo8Tve1cxY21Hc2Q3X25rbzQ/edit
- http://mathworld.wolfram.com/GolayCode.html
노트
위키데이터
- ID : Q1534522
말뭉치
- Recently, some table-lookup decoding algorithms (TLDAs) have been used to correct the binary Golay code.[1]
- The problem of complete decoding the binary Golay code over error-and-erasure memoryless channels is addressed.[2]
- In mathematics and electronics engineering, a binary Golay code is a type of linear error-correcting code used in digital communications.[3]
- conversely, the extended binary Golay code is obtained from the perfect binary Golay code by adding a parity bit).[3]
- Witt in 1938 published a construction of the largest Mathieu group that can be used to construct the extended binary Golay code.[3]
- Turyn's construction of 1967, "A Simple Construction of the Binary Golay Code," that starts from the Hamming code of length 8 and does not use the quadratic residues mod 23.[3]
- It has been shown in the worksheet how to implement encoding and decoding of triple error correcting (24, 12) binary Golay code.[4]
- The automorphism group of the binary Golay code is the Mathieu group M 24 M_{24} , and the other Mathieu group are obtained as stabilisers of various sets in the Golay code.[5]
- If we delete any one component of the vectors in the extended Golay code, we obtain the perfect binary Golay code, a 12-dimensional subspace \(W’ \subset \mathbb{F}_2^{23}\).[6]
- The maximum size of unrestricted binary three-error-correcting codes has been known up to the length of the binary Golay code, with two exceptions.[7]
- In the current computer-aided study, it is shown that \(A(18,8)=64\) and \(A(19,8)=128\), so an optimal code is obtained even after shortening the extended binary Golay code six times.[7]
- We provide a counterexample to show that the extended binary Golay code is not 1-perfect for the proposed poset block structures.[8]
- Two Golay codes exist—the 23-bit binary Golay code and the 11-trit ternary Golay code.[9]
소스
- ↑ High-Speed Decoding of the Binary Golay Code
- ↑ A decoding algorithm for the (23, 12, 7) golay code with error and erasure correction
- ↑ 3.0 3.1 3.2 3.3 Binary Golay code
- ↑ Extended (24, 12) Binary Golay Code: Encoding and Decoding Procedures
- ↑ binary Golay code in nLab
- ↑ Golay Code
- ↑ 7.0 7.1 The sextuply shortened binary Golay code is optimal
- ↑ Characterization of extended Hamming and Golay codes as perfect codes in poset block spaces
- ↑ Magic state distillation with the ternary Golay code
메타데이터
위키데이터
- ID : Q1534522
Spacy 패턴 목록
- [{'LOWER': 'binary'}, {'LOWER': 'golay'}, {'LEMMA': 'code'}]