"Current algebra and anomalies in gauge field theory"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
imported>Pythagoras0  | 
				Pythagoras0 (토론 | 기여)   | 
				||
| (사용자 2명의 중간 판 12개는 보이지 않습니다) | |||
| 2번째 줄: | 2번째 줄: | ||
==internal algebra of symmetry==  | ==internal algebra of symmetry==  | ||
* an internal symmetry is defined by the algebra of generators  | * an internal symmetry is defined by the algebra of generators  | ||
| − | + | :<math>  | |
[I_{\alpha},I_{\beta}]=c_{\alpha \beta \gamma}I_{\gamma}  | [I_{\alpha},I_{\beta}]=c_{\alpha \beta \gamma}I_{\gamma}  | ||
| − | + | </math>  | |
* the generators, in turn, are given by the integral over the time-component of the currents  | * the generators, in turn, are given by the integral over the time-component of the currents  | ||
| − | + | :<math>  | |
I_{\alpha}=\int d^3x J_{0,\alpha}(x)  | I_{\alpha}=\int d^3x J_{0,\alpha}(x)  | ||
| − | + | </math>  | |
* from these equations one obtains the equal-time commutation relation of the currents  | * from these equations one obtains the equal-time commutation relation of the currents  | ||
| − | + | :<math>  | |
[J_{0,\alpha}(\mathbf{x}),J_{0,\beta}(\mathbf{y})]=c_{\alpha \beta \gamma} J_{0,\alpha}(\mathbf{x})\delta(\mathbf{x}-\mathbf{y})  | [J_{0,\alpha}(\mathbf{x}),J_{0,\beta}(\mathbf{y})]=c_{\alpha \beta \gamma} J_{0,\alpha}(\mathbf{x})\delta(\mathbf{x}-\mathbf{y})  | ||
| − | + | </math>  | |
* See [Pietschmann2011] and [[QCD and quarks]] for more  | * See [Pietschmann2011] and [[QCD and quarks]] for more  | ||
| + | |||
| + | * [[Neutral pion decay]]  | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | ==encyclopedia==  | ||
| + | * http://en.wikipedia.org/wiki/Chiral_anomaly  | ||
| + | * http://www.scholarpedia.org/article/Axial_anomaly  | ||
==related items==  | ==related items==  | ||
| 23번째 줄: | 32번째 줄: | ||
==expositions==  | ==expositions==  | ||
| + | * Treiman, Sam, Roman Jackiw, and David J. Gross. Lectures on Current Algebra and Its Applications. Princeton University Press, 2015. http://www.worldscientific.com/worldscibooks/10.1142/0131  | ||
* [Pietschmann2011] Pietschmann, Herbert. “On the Early History of Current Algebra.” The European Physical Journal H 36, no. 1 (July 2011): 75–84. doi:10.1140/epjh/e2011-20013-0.  | * [Pietschmann2011] Pietschmann, Herbert. “On the Early History of Current Algebra.” The European Physical Journal H 36, no. 1 (July 2011): 75–84. doi:10.1140/epjh/e2011-20013-0.  | ||
* Weinberg, Steven. “Effective Field Theory, Past and Future.” arXiv:0908.1964 [gr-Qc, Physics:hep-Ph, Physics:hep-Th, Physics:physics], August 13, 2009. http://arxiv.org/abs/0908.1964.  | * Weinberg, Steven. “Effective Field Theory, Past and Future.” arXiv:0908.1964 [gr-Qc, Physics:hep-Ph, Physics:hep-Th, Physics:physics], August 13, 2009. http://arxiv.org/abs/0908.1964.  | ||
| − | * * O’Raifeartaigh, L. ‘The Intertwining of Affine Kac–moody and Current Algebras’. International Journal of Modern Physics B 13, no. 24n25 (10 October 1999): 3009–20. doi:[http://dx.doi.org/10.1142/S0217979299002824 10.1142/S0217979299002824].  | + | * Adler, Stephen L. ‘Anomalies’. arXiv:hep-th/0411038, 2 November 2004. http://arxiv.org/abs/hep-th/0411038.  | 
| − | *   | + | * Banerjee, H. ‘Chiral Anomalies In Field Theories’. arXiv:hep-th/9907162, 20 July 1999. http://arxiv.org/abs/hep-th/9907162.  | 
| + | * O’Raifeartaigh, L. ‘The Intertwining of Affine Kac–moody and Current Algebras’. International Journal of Modern Physics B 13, no. 24n25 (10 October 1999): 3009–20. doi:[http://dx.doi.org/10.1142/S0217979299002824 10.1142/S0217979299002824].  | ||
| + | * Holstein, Barry R. ‘Anomalies for Pedestrians’. American Journal of Physics 61, no. 2 (1 February 1993): 142–47. doi:10.1119/1.17328.  | ||
* http://isites.harvard.edu/fs/docs/icb.topic1146666.files/IV-6-Anomalies.pdf  | * http://isites.harvard.edu/fs/docs/icb.topic1146666.files/IV-6-Anomalies.pdf  | ||
* Abel, [http://www.maths.dur.ac.uk/~dma0saa/lecture_notes.pdf Anomalies]  | * Abel, [http://www.maths.dur.ac.uk/~dma0saa/lecture_notes.pdf Anomalies]  | ||
| − | |||
==articles==  | ==articles==  | ||
| 35번째 줄: | 46번째 줄: | ||
* Sommerfield, Charles M. ‘Currents as Dynamical Variables’. Physical Review 176, no. 5 (25 December 1968): 2019–25. doi:10.1103/PhysRev.176.2019.  | * Sommerfield, Charles M. ‘Currents as Dynamical Variables’. Physical Review 176, no. 5 (25 December 1968): 2019–25. doi:10.1103/PhysRev.176.2019.  | ||
* Sugawara, Hirotaka. ‘A Field Theory of Currents’. Physical Review 170, no. 5 (25 June 1968): 1659–62. doi:10.1103/PhysRev.170.1659.  | * Sugawara, Hirotaka. ‘A Field Theory of Currents’. Physical Review 170, no. 5 (25 June 1968): 1659–62. doi:10.1103/PhysRev.170.1659.  | ||
| + | |||
| + | |||
| + | [[분류:math and physics]]  | ||
| + | [[분류:Lie theory]]  | ||
| + | [[분류:migrate]]  | ||
| + | |||
| + | ==메타데이터==  | ||
| + | ===위키데이터===  | ||
| + | * ID :  [https://www.wikidata.org/wiki/Q1454725 Q1454725]  | ||
| + | ===Spacy 패턴 목록===  | ||
| + | * [{'LOWER': 'current'}, {'LEMMA': 'algebra'}]  | ||
2021년 2월 17일 (수) 01:00 기준 최신판
internal algebra of symmetry
- an internal symmetry is defined by the algebra of generators
 
\[ [I_{\alpha},I_{\beta}]=c_{\alpha \beta \gamma}I_{\gamma} \]
- the generators, in turn, are given by the integral over the time-component of the currents
 
\[ I_{\alpha}=\int d^3x J_{0,\alpha}(x) \]
- from these equations one obtains the equal-time commutation relation of the currents
 
\[ [J_{0,\alpha}(\mathbf{x}),J_{0,\beta}(\mathbf{y})]=c_{\alpha \beta \gamma} J_{0,\alpha}(\mathbf{x})\delta(\mathbf{x}-\mathbf{y}) \]
- See [Pietschmann2011] and QCD and quarks for more
 
encyclopedia
expositions
- Treiman, Sam, Roman Jackiw, and David J. Gross. Lectures on Current Algebra and Its Applications. Princeton University Press, 2015. http://www.worldscientific.com/worldscibooks/10.1142/0131
 - [Pietschmann2011] Pietschmann, Herbert. “On the Early History of Current Algebra.” The European Physical Journal H 36, no. 1 (July 2011): 75–84. doi:10.1140/epjh/e2011-20013-0.
 - Weinberg, Steven. “Effective Field Theory, Past and Future.” arXiv:0908.1964 [gr-Qc, Physics:hep-Ph, Physics:hep-Th, Physics:physics], August 13, 2009. http://arxiv.org/abs/0908.1964.
 - Adler, Stephen L. ‘Anomalies’. arXiv:hep-th/0411038, 2 November 2004. http://arxiv.org/abs/hep-th/0411038.
 - Banerjee, H. ‘Chiral Anomalies In Field Theories’. arXiv:hep-th/9907162, 20 July 1999. http://arxiv.org/abs/hep-th/9907162.
 - O’Raifeartaigh, L. ‘The Intertwining of Affine Kac–moody and Current Algebras’. International Journal of Modern Physics B 13, no. 24n25 (10 October 1999): 3009–20. doi:10.1142/S0217979299002824.
 - Holstein, Barry R. ‘Anomalies for Pedestrians’. American Journal of Physics 61, no. 2 (1 February 1993): 142–47. doi:10.1119/1.17328.
 - http://isites.harvard.edu/fs/docs/icb.topic1146666.files/IV-6-Anomalies.pdf
 - Abel, Anomalies
 
articles
- Alekseev, Anton, and Thomas Strobl. “Current Algebras and Differential Geometry.” Journal of High Energy Physics 2005, no. 03 (March 15, 2005): 035–035. doi:10.1088/1126-6708/2005/03/035.
 - Sommerfield, Charles M. ‘Currents as Dynamical Variables’. Physical Review 176, no. 5 (25 December 1968): 2019–25. doi:10.1103/PhysRev.176.2019.
 - Sugawara, Hirotaka. ‘A Field Theory of Currents’. Physical Review 170, no. 5 (25 June 1968): 1659–62. doi:10.1103/PhysRev.170.1659.
 
메타데이터
위키데이터
- ID : Q1454725
 
Spacy 패턴 목록
- [{'LOWER': 'current'}, {'LEMMA': 'algebra'}]