"Equivariant Tamagawa number conjecture (ETNC)"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
imported>Pythagoras0  (새 문서: * Burns, David, Masato Kurihara, and Takamichi Sano. “Iwasawa Theory and Zeta Elements for $\mathbb{G}_m$.” arXiv:1506.07935 [math], June 25, 2015. http://arxiv.org/abs/1506.07935...)  | 
				Pythagoras0 (토론 | 기여)   | 
				||
| (사용자 2명의 중간 판 6개는 보이지 않습니다) | |||
| 1번째 줄: | 1번째 줄: | ||
| − | * Burns, David, Masato Kurihara, and Takamichi Sano. “Iwasawa Theory and Zeta Elements for   | + | ==introduction==  | 
| + | * The local Tamagawa number conjecure, first formulated by Fontaine and Perrin-Riou, expresses the compatibility of the (global) Tamagawa number conjecture on motivic L-functions with the functional equation.   | ||
| + | * The local conjecture was proven for Tate motives over finite unramified extensions <math>K/\mathbb{Q}_p</math> by Bloch and Kato.  | ||
| + | |||
| + | |||
| + | ==articles==  | ||
| + | * Olivier Fouquet, <math>p</math>-adic properties of motivic fundamental lines (Kato's conjecture is (probably) false for (not so) trivial reasons), arXiv:1604.06413 [math.NT], April 21 2016, http://arxiv.org/abs/1604.06413  | ||
| + | * Olivier Fouquet, The Equivariant Tamagawa Number Conjecture for modular motives with coefficients in Hecke algebras, arXiv:1604.06411 [math.NT], April 21 2016, http://arxiv.org/abs/1604.06411  | ||
| + | * Daigle, Jay, and Matthias Flach. “On the Local Tamagawa Number Conjecture for Tate Motives over Tamely Ramified Fields.” arXiv:1508.06031 [math], August 25, 2015. http://arxiv.org/abs/1508.06031.  | ||
| + | * Burns, David, Masato Kurihara, and Takamichi Sano. “Iwasawa Theory and Zeta Elements for <math>\mathbb{G}_m</math>.” arXiv:1506.07935 [math], June 25, 2015. http://arxiv.org/abs/1506.07935.  | ||
[[분류:L-functions and L-values]]  | [[분류:L-functions and L-values]]  | ||
| + | [[분류:migrate]]  | ||
2020년 11월 16일 (월) 10:10 기준 최신판
introduction
- The local Tamagawa number conjecure, first formulated by Fontaine and Perrin-Riou, expresses the compatibility of the (global) Tamagawa number conjecture on motivic L-functions with the functional equation.
 - The local conjecture was proven for Tate motives over finite unramified extensions \(K/\mathbb{Q}_p\) by Bloch and Kato.
 
articles
- Olivier Fouquet, \(p\)-adic properties of motivic fundamental lines (Kato's conjecture is (probably) false for (not so) trivial reasons), arXiv:1604.06413 [math.NT], April 21 2016, http://arxiv.org/abs/1604.06413
 - Olivier Fouquet, The Equivariant Tamagawa Number Conjecture for modular motives with coefficients in Hecke algebras, arXiv:1604.06411 [math.NT], April 21 2016, http://arxiv.org/abs/1604.06411
 - Daigle, Jay, and Matthias Flach. “On the Local Tamagawa Number Conjecture for Tate Motives over Tamely Ramified Fields.” arXiv:1508.06031 [math], August 25, 2015. http://arxiv.org/abs/1508.06031.
 - Burns, David, Masato Kurihara, and Takamichi Sano. “Iwasawa Theory and Zeta Elements for \(\mathbb{G}_m\).” arXiv:1506.07935 [math], June 25, 2015. http://arxiv.org/abs/1506.07935.