"Complete reducibility"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
Pythagoras0 (토론 | 기여) |
||
(사용자 2명의 중간 판 6개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
− | * two approaches | + | ==introduction== |
+ | * two approaches | ||
** Weyl's unitarian trick | ** Weyl's unitarian trick | ||
** Use Casimir operator | ** Use Casimir operator | ||
* Casimir exists because invariant symmetric non-degenerated bilinear form exists. | * Casimir exists because invariant symmetric non-degenerated bilinear form exists. | ||
− | * | + | |
+ | |||
+ | ==related items== | ||
+ | * [[Sugawara construction]] | ||
+ | * [[Casimir operator]] | ||
+ | |||
+ | |||
+ | ==expositions== | ||
+ | * Iachello, Francesco. “Casimir Operators and Their Eigenvalues.” In Lie Algebras and Applications, 63–74. Lecture Notes in Physics 708. Springer Berlin Heidelberg, 2006. http://link.springer.com.ezproxy.library.uq.edu.au/chapter/10.1007/3-540-36239-8_5. | ||
+ | |||
[[분류:Lie theory]] | [[분류:Lie theory]] | ||
+ | |||
+ | ==메타데이터== | ||
+ | ===위키데이터=== | ||
+ | * ID : [https://www.wikidata.org/wiki/Q17037933 Q17037933] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'weyl'}, {'LOWER': "'s"}, {'LOWER': 'theorem'}, {'LOWER': 'on'}, {'LOWER': 'complete'}, {'LEMMA': 'reducibility'}] |
2021년 2월 17일 (수) 01:00 기준 최신판
introduction
- two approaches
- Weyl's unitarian trick
- Use Casimir operator
- Casimir exists because invariant symmetric non-degenerated bilinear form exists.
expositions
- Iachello, Francesco. “Casimir Operators and Their Eigenvalues.” In Lie Algebras and Applications, 63–74. Lecture Notes in Physics 708. Springer Berlin Heidelberg, 2006. http://link.springer.com.ezproxy.library.uq.edu.au/chapter/10.1007/3-540-36239-8_5.
메타데이터
위키데이터
- ID : Q17037933
Spacy 패턴 목록
- [{'LOWER': 'weyl'}, {'LOWER': "'s"}, {'LOWER': 'theorem'}, {'LOWER': 'on'}, {'LOWER': 'complete'}, {'LEMMA': 'reducibility'}]