"Inverse positive matrix"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
(같은 사용자의 중간 판 2개는 보이지 않습니다) | |||
3번째 줄: | 3번째 줄: | ||
http://books.google.com/books?id=ngUgEYQAvukC&pg=PA45&lpg=PA45&dq=positive+definite+Z-matrix+inverse+positive&source=bl&ots=joJYO0yAD3&sig=Tfurzf9Tn7LX6RtyDyTF94g7kDs&hl=ko&sa=X&ei=3mboTtSxNoqsiQLB64TaAg&ved=0CEIQ6AEwAw#v=onepage&q=positive%20definite%20Z-matrix%20inverse%20positive&f=false | http://books.google.com/books?id=ngUgEYQAvukC&pg=PA45&lpg=PA45&dq=positive+definite+Z-matrix+inverse+positive&source=bl&ots=joJYO0yAD3&sig=Tfurzf9Tn7LX6RtyDyTF94g7kDs&hl=ko&sa=X&ei=3mboTtSxNoqsiQLB64TaAg&ved=0CEIQ6AEwAw#v=onepage&q=positive%20definite%20Z-matrix%20inverse%20positive&f=false | ||
− | + | ||
Hawkins-Simon condition | Hawkins-Simon condition | ||
9번째 줄: | 9번째 줄: | ||
Le Chatelier-Braun principle | Le Chatelier-Braun principle | ||
− | + | ||
[http://en.wikipedia.org/wiki/Le_Chatelier%27s_principle http://en.wikipedia.org/wiki/Le_Chatelier's_principle] | [http://en.wikipedia.org/wiki/Le_Chatelier%27s_principle http://en.wikipedia.org/wiki/Le_Chatelier's_principle] | ||
− | + | ||
http://www.emis.ams.org/journals/ELA/ela-articles/articles/vol11_pp59-65.pdf | http://www.emis.ams.org/journals/ELA/ela-articles/articles/vol11_pp59-65.pdf | ||
− | + | ||
http://dml.cz/dmlcz/100526 | http://dml.cz/dmlcz/100526 | ||
− | + | ||
− | + | ||
− | + | ||
http://eprints.lib.hokudai.ac.jp/dspace/bitstream/2115/30645/1/3_P46-48.pdf | http://eprints.lib.hokudai.ac.jp/dspace/bitstream/2115/30645/1/3_P46-48.pdf | ||
[[분류:수학노트(피)]] | [[분류:수학노트(피)]] | ||
[[분류:migrate]] | [[분류:migrate]] | ||
+ | |||
+ | ==메타데이터== | ||
+ | ===위키데이터=== | ||
+ | * ID : [https://www.wikidata.org/wiki/Q22666682 Q22666682] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'inverse'}, {'OP': '*'}, {'LOWER': 'positive'}, {'LEMMA': 'matrix'}] |
2021년 2월 17일 (수) 01:24 기준 최신판
A symmetric Z-matrix has a positive inverse if and only if it has a positive definite inverse.
Hawkins-Simon condition
Le Chatelier-Braun principle
http://en.wikipedia.org/wiki/Le_Chatelier's_principle
http://www.emis.ams.org/journals/ELA/ela-articles/articles/vol11_pp59-65.pdf
http://eprints.lib.hokudai.ac.jp/dspace/bitstream/2115/30645/1/3_P46-48.pdf
메타데이터
위키데이터
- ID : Q22666682
Spacy 패턴 목록
- [{'LOWER': 'inverse'}, {'OP': '*'}, {'LOWER': 'positive'}, {'LEMMA': 'matrix'}]