"Representations of symmetrizable Kac-Moody algebras"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
* Let $L(A)$ be a symmetrizable Kac-Moody algebra
+
* Let <math>L(A)</math> be a symmetrizable Kac-Moody algebra
 
* the category <math>\mathcal{O}</math>
 
* the category <math>\mathcal{O}</math>
 
* Integrable modules
 
* Integrable modules
  
  
==the category $\mathcal{O}$==
+
==the category <math>\mathcal{O}</math>==
* $V$ is an object in $\mathcal{O}$
+
* <math>V</math> is an object in <math>\mathcal{O}</math>
# $V=\oplus_{\lambda\in \mathfrak{h}^{*}}V_{\lambda}$
+
# <math>V=\oplus_{\lambda\in \mathfrak{h}^{*}}V_{\lambda}</math>
# $\dim V_{\lambda}$ is finite for each $\lambda\in \mathfrak{h}^{*}$
+
# <math>\dim V_{\lambda}</math> is finite for each <math>\lambda\in \mathfrak{h}^{*}</math>
# there exists a finite set $\lambda_1,\cdots, \lambda_s\in \mathfrak{h}^{*}$ such that each $\lambda$ with $V_{\lambda}\neq 0$ satisfies $\lambda \prec \lambda_i$ for some $i\in \{1,\cdots, s\}$
+
# there exists a finite set <math>\lambda_1,\cdots, \lambda_s\in \mathfrak{h}^{*}</math> such that each <math>\lambda</math> with <math>V_{\lambda}\neq 0</math> satisfies <math>\lambda \prec \lambda_i</math> for some <math>i\in \{1,\cdots, s\}</math>
  
  
 
==integrable module==
 
==integrable module==
* An $L(A)$-module $V$ is called integrable if  
+
* An <math>L(A)</math>-module <math>V</math> is called integrable if  
$$
+
:<math>
 
V=\oplus_{\lambda\in \mathfrak{h}^{*}}V_{\lambda}
 
V=\oplus_{\lambda\in \mathfrak{h}^{*}}V_{\lambda}
$$
+
</math>
and if $e_i : V\to V$ and $f_i : V\to V$ are locally nilpotent for all $i$
+
and if <math>e_i : V\to V</math> and <math>f_i : V\to V</math> are locally nilpotent for all <math>i</math>
 
;Thm
 
;Thm
Let $L(A)$ be a symmetrizable Kac-Moody algebra and $L(\lambda)$ be an irreducible $L(A)$-module in the category $\mathcal{O}$. Then $L(\lambda)$ is integrable if and only if $\lambda$ is dominant and integral.
+
Let <math>L(A)</math> be a symmetrizable Kac-Moody algebra and <math>L(\lambda)</math> be an irreducible <math>L(A)</math>-module in the category <math>\mathcal{O}</math>. Then <math>L(\lambda)</math> is integrable if and only if <math>\lambda</math> is dominant and integral.
 
* [[Weyl-Kac character formula]]
 
* [[Weyl-Kac character formula]]
  

2020년 11월 16일 (월) 10:07 기준 최신판

introduction

  • Let \(L(A)\) be a symmetrizable Kac-Moody algebra
  • the category \(\mathcal{O}\)
  • Integrable modules


the category \(\mathcal{O}\)

  • \(V\) is an object in \(\mathcal{O}\)
  1. \(V=\oplus_{\lambda\in \mathfrak{h}^{*}}V_{\lambda}\)
  2. \(\dim V_{\lambda}\) is finite for each \(\lambda\in \mathfrak{h}^{*}\)
  3. there exists a finite set \(\lambda_1,\cdots, \lambda_s\in \mathfrak{h}^{*}\) such that each \(\lambda\) with \(V_{\lambda}\neq 0\) satisfies \(\lambda \prec \lambda_i\) for some \(i\in \{1,\cdots, s\}\)


integrable module

  • An \(L(A)\)-module \(V\) is called integrable if

\[ V=\oplus_{\lambda\in \mathfrak{h}^{*}}V_{\lambda} \] and if \(e_i : V\to V\) and \(f_i : V\to V\) are locally nilpotent for all \(i\)

Thm

Let \(L(A)\) be a symmetrizable Kac-Moody algebra and \(L(\lambda)\) be an irreducible \(L(A)\)-module in the category \(\mathcal{O}\). Then \(L(\lambda)\) is integrable if and only if \(\lambda\) is dominant and integral.


related items