"Ramanujan summation"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) (→노트: 새 문단) |
Pythagoras0 (토론 | 기여) |
||
(같은 사용자의 중간 판 하나는 보이지 않습니다) | |||
14번째 줄: | 14번째 줄: | ||
===소스=== | ===소스=== | ||
<references /> | <references /> | ||
+ | |||
+ | ==메타데이터== | ||
+ | ===위키데이터=== | ||
+ | * ID : [https://www.wikidata.org/wiki/Q3533072 Q3533072] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'ramanujan'}, {'LEMMA': 'summation'}] |
2021년 2월 16일 (화) 23:50 기준 최신판
노트
위키데이터
- ID : Q3533072
말뭉치
- The Ramanujan Summation also has had a big impact in the area of general physics, specifically in the solution to the phenomenon know as the Casimir Effect.[1]
- Ramanujan summation is a technique invented by the mathematician Srinivasa Ramanujan for assigning a value to divergent infinite series.[2]
- Ramanujan summation essentially is a property of the partial sums, rather than a property of the entire sum, as that doesn't exist.[2]
- In the following text, ( ℜ ) {\displaystyle (\Re )} indicates "Ramanujan summation".[2]
- More advanced methods are required, such as zeta function regularization or Ramanujan summation.[3]
- Smoothing is a conceptual bridge between zeta function regularization, with its reliance on complex analysis, and Ramanujan summation, with its shortcut to the Euler–Maclaurin formula.[3]
- Ramanujan summation is a method to isolate the constant term in the Euler–Maclaurin formula for the partial sums of a series.[3]
- The regularity requirement prevents the use of Ramanujan summation upon spaced-out series like 0 + 2 + 0 + 4 + ⋯, because no regular function takes those values.[3]
소스
메타데이터
위키데이터
- ID : Q3533072
Spacy 패턴 목록
- [{'LOWER': 'ramanujan'}, {'LEMMA': 'summation'}]