"비선형 차원축소"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) (→메타데이터: 새 문단) |
Pythagoras0 (토론 | 기여) |
||
11번째 줄: | 11번째 줄: | ||
<references /> | <references /> | ||
− | == 메타데이터 == | + | ==메타데이터== |
− | |||
===위키데이터=== | ===위키데이터=== | ||
* ID : [https://www.wikidata.org/wiki/Q7049464 Q7049464] | * ID : [https://www.wikidata.org/wiki/Q7049464 Q7049464] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'nonlinear'}, {'LOWER': 'dimensionality'}, {'LEMMA': 'reduction'}] | ||
+ | * [{'LEMMA': 'NLDR'}] | ||
+ | * [{'LOWER': 'manifold'}, {'LEMMA': 'learning'}] |
2021년 2월 17일 (수) 00:43 기준 최신판
노트
- It should be apparent, therefore, that NLDR has several applications in the field of computer-vision.[1]
- Manifold Learning can be thought of as an attempt to generalize linear frameworks like PCA to be sensitive to non-linear structure in data.[2]
- Tools for NLDR can help researchers across all areas of science and engineering to better understand and visualize their data.[3]
- (2020) Predict high-frequency trading marker via manifold learning.[4]
- Framework of Multiple-point Statistical Simulation Using Manifold Learning for the Dimensionality Reduction of Patterns.[4]
- Joint Sparsity Aided Joint Manifold Learning for Sensor Fusion.[4]
- Local distances preserving based manifold learning.[4]
소스
메타데이터
위키데이터
- ID : Q7049464
Spacy 패턴 목록
- [{'LOWER': 'nonlinear'}, {'LOWER': 'dimensionality'}, {'LEMMA': 'reduction'}]
- [{'LEMMA': 'NLDR'}]
- [{'LOWER': 'manifold'}, {'LEMMA': 'learning'}]