"골레이 코드 (Golay code)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
(같은 사용자의 중간 판 하나는 보이지 않습니다) | |||
64번째 줄: | 64번째 줄: | ||
===소스=== | ===소스=== | ||
<references /> | <references /> | ||
+ | |||
+ | ==메타데이터== | ||
+ | ===위키데이터=== | ||
+ | * ID : [https://www.wikidata.org/wiki/Q1534522 Q1534522] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'binary'}, {'LOWER': 'golay'}, {'LEMMA': 'code'}] |
2021년 2월 17일 (수) 03:59 기준 최신판
개요
- [24,12,8] 골레이 코드 \(C\)
- 유한체 \(\mathbb{F}_2\)위에 정의되는 선형코드 \(C\subset \mathbb{F}_2^{24}\)
- 12차원 벡터 공간을 이루며, \(C\)의 원소의 개수는 \(2^{12}=4096\)
- 가장 작은 길이를 갖는 코드는 길이 8
- self-dual
codeword
weight enumerator
- \(W_{C}(x.y)=x^{24}+759 x^{16} y^8+2576 x^{12} y^{12}+759 x^8 y^{16}+y^{24}\)
- 맥윌리엄스 항등식 (MacWilliams Identity)에 의해 다음이 성립
\[ W_{C}(x,y)=W_{C}\left(\frac{x+y}{\sqrt{2}},\frac{x-y}{\sqrt{2}}\right) \]
길이 8인 코드
- 759개
- 슈타이너 시스템 S(5, 8, 24)으로 불린다
역사
관련된 항목들
매스매티카 파일 및 계산 리소스
- https://docs.google.com/file/d/0B8XXo8Tve1cxY21Hc2Q3X25rbzQ/edit
- http://mathworld.wolfram.com/GolayCode.html
노트
위키데이터
- ID : Q1534522
말뭉치
- Recently, some table-lookup decoding algorithms (TLDAs) have been used to correct the binary Golay code.[1]
- The problem of complete decoding the binary Golay code over error-and-erasure memoryless channels is addressed.[2]
- In mathematics and electronics engineering, a binary Golay code is a type of linear error-correcting code used in digital communications.[3]
- conversely, the extended binary Golay code is obtained from the perfect binary Golay code by adding a parity bit).[3]
- Witt in 1938 published a construction of the largest Mathieu group that can be used to construct the extended binary Golay code.[3]
- Turyn's construction of 1967, "A Simple Construction of the Binary Golay Code," that starts from the Hamming code of length 8 and does not use the quadratic residues mod 23.[3]
- It has been shown in the worksheet how to implement encoding and decoding of triple error correcting (24, 12) binary Golay code.[4]
- The automorphism group of the binary Golay code is the Mathieu group M 24 M_{24} , and the other Mathieu group are obtained as stabilisers of various sets in the Golay code.[5]
- If we delete any one component of the vectors in the extended Golay code, we obtain the perfect binary Golay code, a 12-dimensional subspace \(W’ \subset \mathbb{F}_2^{23}\).[6]
- The maximum size of unrestricted binary three-error-correcting codes has been known up to the length of the binary Golay code, with two exceptions.[7]
- In the current computer-aided study, it is shown that \(A(18,8)=64\) and \(A(19,8)=128\), so an optimal code is obtained even after shortening the extended binary Golay code six times.[7]
- We provide a counterexample to show that the extended binary Golay code is not 1-perfect for the proposed poset block structures.[8]
- Two Golay codes exist—the 23-bit binary Golay code and the 11-trit ternary Golay code.[9]
소스
- ↑ High-Speed Decoding of the Binary Golay Code
- ↑ A decoding algorithm for the (23, 12, 7) golay code with error and erasure correction
- ↑ 3.0 3.1 3.2 3.3 Binary Golay code
- ↑ Extended (24, 12) Binary Golay Code: Encoding and Decoding Procedures
- ↑ binary Golay code in nLab
- ↑ Golay Code
- ↑ 7.0 7.1 The sextuply shortened binary Golay code is optimal
- ↑ Characterization of extended Hamming and Golay codes as perfect codes in poset block spaces
- ↑ Magic state distillation with the ternary Golay code
메타데이터
위키데이터
- ID : Q1534522
Spacy 패턴 목록
- [{'LOWER': 'binary'}, {'LOWER': 'golay'}, {'LEMMA': 'code'}]