"라마누잔의 세타함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(같은 사용자의 중간 판 하나는 보이지 않습니다)
44번째 줄: 44번째 줄:
  
 
[[분류:q-급수]]
 
[[분류:q-급수]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q2630765 Q2630765]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'ramanujan'}, {'LOWER': 'theta'}, {'LEMMA': 'function'}]

2021년 2월 17일 (수) 04:04 기준 최신판

개요

  • 라마누잔의 세타함수를 다음과 같이 정의함

\[f(a,b) = \sum_{n=-\infty}^\infty a^{n(n+1)/2} \; b^{n(n-1)/2}\]

\[f(a,b) = (-a; ab)_\infty \;(-b; ab)_\infty \;(ab;ab)_\infty\]

  • \(\phi, \psi, \cdots\)

\[\phi(q):=f(q,q)=\sum _{n=-\infty }^{\infty } q^{n^2}=(-q;q^2)^{2}_{\infty} \left(q^2;q^2\right){}_{\infty }\] \[\psi(q):=f(q,q^{3})=\sum _{n=0}^{\infty } q^{n(n+1)/2}=\frac{\left(q^2;q^2\right){}_{\infty }}{\left(q;q^2\right){}_{\infty }}\] \[f(-q):=f(-q,-q^{2})=(q;q)_{\infty }\] \[\frac{f(-q^{2},-q^{2})}{f(-q)}=\frac{\left(q^2;q^4\right)^2_{\infty }\left(q^4;q^4\right){}_{\infty }}{(q;q)_{\infty }}=\left(-q;q^2\right){}_{\infty }\]



메모

\[f(-q)=(q;q)_{\infty}\] \[\phi(-q)=\frac{(q;q)_{\infty}}{(-q;q)_{\infty}}\] \[\psi(-q)=\frac{(q^{2};q^{2})_{\infty}}{(-q;q^{2})_{\infty}}\] \[\chi(-q)=(q;q^{2})_{\infty}\]


메모


관련된 항목들

매스매티카 파일 및 계산 리소스


사전 형태의 자료

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'ramanujan'}, {'LOWER': 'theta'}, {'LEMMA': 'function'}]