"Half-integral weight modular forms"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) (Pythagoras0 (토론)의 48551판 편집을 되돌림) 태그: 편집 취소 |
(같은 사용자의 중간 판 하나는 보이지 않습니다) | |
(차이 없음)
|
2020년 12월 28일 (월) 04:49 기준 최신판
introduction
- modular forms of weight 1/2, which were classified by Serre & Stark (1977)
\(\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbf{Z}) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} {*} & {*} \\ 0 & {*} \end{pmatrix} \pmod{N} \right\}\)
\(\Gamma_0(4)\)
generated by \(-I, T, ST^{-4}S\)
Define
\(\epsilon_d = \begin{cases} 1 \mbox{ if }d\equiv 1 \pmod{4} \\i \mbox{ if } d\equiv 3 \pmod{4} \end{cases}\)
\(\sqrt z\) has branch in \((-\pi/2, \pi/2]\)
Define
\(j(\gamma, z)=(\frac{c}{d})\epsilon_d^{-1}\sqrt{cz+d}\) for \(\gamma \in \Gamma_0(4)\)
Check
\(j(\alpha\beta,z)=j(\alpha,\beta z)j(\beta,z)\)
\(j(\gamma, z)^2=\begin{cases} {cz+d} \mbox{ if }d\equiv 1 \pmod{4} \\ -(cz+d) \mbox{ if } d\equiv 3 \pmod{4} \end{cases}\)
action
For \(\xi=(\alpha, \phi(z))\) and function \(f\) on the upper half plane
\(f(z)|[\xi]_{k/2}:=f(\alpha z)\phi(z)^{-k}\)
unary theta functions of weight 1/2
theta functions of weight 3/2
expositions
- Notes on modular forms of half-integral weight http://wwwf.imperial.ac.uk/~buzzard/maths/research/notes/modular_forms_of_half_integral_weight.pdf
- Funke, Jens. "CM points and weight 3/2 modular forms." Analytic Number Theory (2007): 107. https://www.maths.dur.ac.uk/~dma0jf/G-D-proceedings-funke.pdf
articles
- Chen, Bin, and Jie Wu. “Non-Vanishing and Sign Changes of Hecke Eigenvalues for Half-Integral Weight Cusp Forms.” arXiv:1512.08400 [math], December 28, 2015. http://arxiv.org/abs/1512.08400.
- Lau, Yuk-Kam, Emmanuel Royer, and Jie Wu. “Sign of Fourier Coefficients of Modular Forms of Half Integral Weight.” arXiv:1507.00518 [math], July 2, 2015. http://arxiv.org/abs/1507.00518.
- http://www.worldscientific.com/doi/abs/10.1142/S1793042110003484
- http://link.springer.com/article/10.1007%2Fs00013-013-0492-5
- serre-stark_1976.pdf, Modular functions of one variable VI
- Fourier coefficients of modular forms of half-integral weight
- Henryk Iwaniec, Inventiones Mathematicae, Volume 87, Number 2 / 1987년 6월
- Fourier coefficients of modular forms of half-integral weight
- W. Kohnen, Math. Ann. 271 (1985), 237–268.