"Calogero-Moser system"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(→‎노트: 새 문단)
 
(→‎메타데이터: 새 문단)
 
(같은 사용자의 중간 판 2개는 보이지 않습니다)
10번째 줄: 10번째 줄:
 
===소스===
 
===소스===
 
  <references />
 
  <references />
 +
 +
== 메타데이터 ==
 +
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'calogero'}, {'OP': '*'}, {'LOWER': 'moser'}, {'LEMMA': 'system'}]
 +
 +
== 노트 ==
 +
 +
===말뭉치===
 +
# The proposed project lies in the areas of integrable systems, and more specifically Calogero-Moser systems, Cherednik algebras and the theory of Frobenius manifolds.<ref name="ref_20390d6d">[https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/F032889/1 Calogero-Moser systems, Cherednik algebras and Frobenius structures]</ref>
 +
# This will also give a unified approach to the integrability of generalised Calogero-Moser systems.<ref name="ref_20390d6d" />
 +
# Lie algebra coupled to the Calogero-Moser system of n interacting particles on the real line.<ref name="ref_625f51c8">[https://ui.adsabs.harvard.edu/abs/1985PhLA..111..101W/abstract An integrable marriage of the Euler equations with the Calogero-Moser system]</ref>
 +
# Calogero-Moser systems are classical and quantum integrable multiparticle dynamics defined for any root system Delta.<ref name="ref_99ff68c1">[https://pure.york.ac.uk/portal/en/publications/quantum-versus-classical-integrability-in-calogeromoser-systems(477c9368-0ae8-4ce6-b670-95c6385ee109).html Quantum versus classical integrability in Calogero-Moser systems]</ref>
 +
# The associated integrable models (called integrable spin Calogero-Moser systems in the paper) and their Lax pairs are then obtained via Poisson reduction and gauge transformations.<ref name="ref_eeec4711">[https://www.semanticscholar.org/paper/A-Class-of-Integrable-Spin-Calogero-Moser-Systems-Li-Xu/69f23382b0a053e2742ea7da2a379fcfeba16be6 [PDF] A Class of Integrable Spin Calogero-Moser Systems]</ref>
 +
===소스===
 +
<references />
 +
 +
== 메타데이터 ==
 +
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'calogero'}, {'OP': '*'}, {'LOWER': 'moser'}, {'LEMMA': 'system'}]

2021년 1월 2일 (토) 05:14 기준 최신판

노트

말뭉치

  1. Calogero–Moser system with elliptic potentials are studied.[1]
  2. The goal of the present lecture notes is to give an introduction to the theory of Calogero–Moser systems, highlighting their interplay with these fields.[2]
  3. The proposed project lies in the areas of integrable systems, and more specifically Calogero-Moser systems, Cherednik algebras and the theory of Frobenius manifolds.[3]
  4. This will also give a unified approach to the integrability of generalised Calogero-Moser systems.[3]
  5. We also present two important classes of new examples, a family of hyperbolic spin Calogero-Moser systems and the spin Toda lattices.[4]
  6. If G is a real reflection group, these families reduce to the known generalizations of elliptic Calogero–Moser systems, but in the non-real case they appear to be new.[5]

소스

메타데이터

Spacy 패턴 목록

  • [{'LOWER': 'calogero'}, {'OP': '*'}, {'LOWER': 'moser'}, {'LEMMA': 'system'}]

노트

말뭉치

  1. The proposed project lies in the areas of integrable systems, and more specifically Calogero-Moser systems, Cherednik algebras and the theory of Frobenius manifolds.[1]
  2. This will also give a unified approach to the integrability of generalised Calogero-Moser systems.[1]
  3. Lie algebra coupled to the Calogero-Moser system of n interacting particles on the real line.[2]
  4. Calogero-Moser systems are classical and quantum integrable multiparticle dynamics defined for any root system Delta.[3]
  5. The associated integrable models (called integrable spin Calogero-Moser systems in the paper) and their Lax pairs are then obtained via Poisson reduction and gauge transformations.[4]

소스

메타데이터

Spacy 패턴 목록

  • [{'LOWER': 'calogero'}, {'OP': '*'}, {'LOWER': 'moser'}, {'LEMMA': 'system'}]