"더블감마함수와 반스(Barnes) G-함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 2명의 중간 판 27개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
+
==개요==
  
 
+
*  더블 감마함수의 역수로 정의되는 함수
 +
*  성질:<math>G(1)=1</math>:<math>G(s+1) =\Gamma(s)G(s)</math>
 +
*  자연수 n에 대하여 다음이 성립한다:<math>G(n)=(n-1)!\times (n-2)! \times\cdots 2!\times 1!</math>
  
 
+
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">개요</h5>
+
  
*  더블 감마함수의 역수로 정의되는 함수<br>
+
==점근급수==
* 성질<br><math>G(1)=1</math><br><math>G(s+1) =\Gamma(s)G(s)</math><br>
+
* [[점근 급수(asymptotic series)]]
*  자연수 n에 대하여 다음이 성립한다<br><math>G(n)=(n-1)!\times (n-2)! \times\cdots 2!\times 1!</math><br>
+
:<math>\log G(z+1)=\frac{1}{12}~-~\log A~+~\frac{z}{2}\log 2\pi~+~\left(\frac{z^2}{2} -\frac{1}{12}\right)\log z~-~\frac{3z^2}{4}~+~ \sum_{k=1}^{N}\frac{B_{2k + 2}}{4k\left(k + 1\right)z^{2k}}~+~O\left(\frac{1}{z^{2N + 2}}\right)</math>
  
 
+
여기서 A는 [[Glaisher–Kinkelin 상수]] <math>A= e^{\frac{1}{12}-\zeta^\prime(-1)}= 1.28242712\dots</math>
  
 
+
* [[스털링 공식]]
  
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">근사식</h5>
+
  
<math>\log G(z+1)=\frac{1}{12}~-~\log A~+~\frac{z}{2}\log 2\pi~+~\left(\frac{z^2}{2} -\frac{1}{12}\right)\log z~-~\frac{3z^2}{4}~+~ \sum_{k=1}^{N}\frac{B_{2k + 2}}{4k\left(k + 1\right)z^{2k}}~+~O\left(\frac{1}{z^{2N + 2}}\right)</math>
+
  
여기서 A는 [[Glaisher–Kinkelin 상수]] <math>A= e^{\frac{1}{12}-\zeta^\prime(-1)}= 1.28242712\dots</math>
+
==special values==
  
* [[스털링 공식]]<br>
+
* A는 [[Glaisher–Kinkelin 상수]]:<math>G(\frac{1}{2})=2^{\frac{1}{24}}\cdot \pi^{-\frac{1}{4}}\cdot e^{\frac{1}{8}}\cdot A^{-\frac{3}{2}}</math>:<math>G(\frac{3}{4})=2^{-\frac{1}{8}}\cdot \pi^{-\frac{1}{4}}\cdot e^{\frac{1}{8}}\cdot A^{-\frac{3}{2}}</math> 또는 <math>G(\frac{3}{4})=2^{-\frac{1}{8}}\cdot \pi^{-\frac{1}{4}}\cdot e^{\frac{3}{32}+\frac{G}{4\pi}}\cdot A^{-\frac{9}{8}}\cdot \Gamma(\frac{1}{4})^{\frac{1}{4}}</math>
  
 
+
  
 
+
  
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">special values</h5>
+
==로그 삼각함수 적분과의 관계==
  
*  A는 [[Glaisher–Kinkelin 상수]]<br><math>G(\frac{1}{2})=2^{\frac{1}{24}}\cdot \pi^{-\frac{1}{4}}\cdot e^{\frac{1}{8}}\cdot A^{-\frac{3}{2}}</math><br><math>G(\frac{3}{4})=2^{-\frac{1}{8}}\cdot \pi^{-\frac{1}{4}}\cdot e^{\frac{1}{8}}\cdot A^{-\frac{3}{2}}</math> 또는 <math>G(\frac{3}{4})=2^{-\frac{1}{8}}\cdot \pi^{-\frac{1}{4}}\cdot e^{\frac{3}{32}+\frac{G}{4\pi}}\cdot A^{-\frac{9}{8}}\cdot \Gamma(\frac{1}{4})^{\frac{1}{4}}</math><br>
+
:<math>\int_{0}^{t}\pi u \cot \pi u\,du=t\log {2\pi}+\log \frac{G(1-t)}{G(1+t)}</math>
 +
:<math>\int_{0}^{t}\log(\sin \pi u)\,du=t\log(\frac{\sin \pi t}{2\pi})+\log \frac{G(1+t)}{G(1-t)}</math>
  
 
+
  
 
+
 +
  
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">로그 삼각함수 적분과의 관계</h5>
+
  
<math>\int_{0}^{t}\pi u \cot \pi u\,du=t\log {2\pi}+\log \frac{G(1-t)}{G(1+t)}</math>
+
==역사==
 +
* [[수학사 연표]]
  
<math>\int_{0}^{t}\log(\sin \pi u)\,du=t\log(\frac{\sin \pi t}{2\pi})+\log \frac{G(1+t)}{G(1-t)}</math>
+
  
 
+
==메모==
  
 
+
  
 
+
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">재미있는 사실</h5>
+
==관련된 항목들==
  
 
+
* [[감마함수]]
 +
* [[멀티 감마함수(multiple gamma function)]]
 +
* [[로그 사인 적분 (log sine integrals)]]
  
* Math Overflow http://mathoverflow.net/search?q=
+
* 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
 
  
 
+
  
 
+
==수학용어번역==
 +
* {{학술용어집|url=hyperfactorial}}
 +
* 발음사전 http://www.forvo.com/search/Barnes
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">역사</h5>
+
  
 
+
==사전 형태의 자료==
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* [[수학사연표 (역사)|수학사연표]]
 
*  
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">메모</h5>
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련된 항목들</h5>
 
 
 
* [[감마함수]]<br>
 
* [[멀티 감마함수(multiple gamma function)]]<br>
 
* [[로그 사인 적분 (log sine integrals)]]<br>
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">수학용어번역</h5>
 
 
 
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=hyperfactorial
 
* 발음사전 http://www.forvo.com/search/Barnes
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=hyperfactorial
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">사전 형태의 자료</h5>
 
 
 
* http://ko.wikipedia.org/wiki/
 
 
* http://en.wikipedia.org/wiki/Barnes_G-function
 
* http://en.wikipedia.org/wiki/Barnes_G-function
 
* http://www.wolframalpha.com/input/?i=Barnes+G-function
 
* http://www.wolframalpha.com/input/?i=Barnes+G-function
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]<br>
+
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
** [http://dlmf.nist.gov/5.17 § 5.17. Barnes’ -Function (Double Gamma Function)]
 
** [http://dlmf.nist.gov/5.17 § 5.17. Barnes’ -Function (Double Gamma Function)]
* [http://www.research.att.com/~njas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 
** http://www.research.att.com/~njas/sequences/?q=
 
 
 
 
  
 
+
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련논문</h5>
+
==관련논문==
  
* [http://www.cs.cmu.edu/~adamchik/articles/Srivastava/ch_sr.pdf Multiple Gamma and Related Functions]<br>
+
* [http://www.cs.cmu.edu/~adamchik/articles/Srivastava/ch_sr.pdf Multiple Gamma and Related Functions]
 
** J. Choi, H. M. Srivastava, V.S. Adamchik , Applied Mathematics and Computation, 134 (2003), 515-533
 
** J. Choi, H. M. Srivastava, V.S. Adamchik , Applied Mathematics and Computation, 134 (2003), 515-533
* [http://projecteuclid.org/euclid.tjm/1270472992 A Proof of the Classical Kronecker Limit Formula]<br>
+
* [http://projecteuclid.org/euclid.tjm/1270472992 A Proof of the Classical Kronecker Limit Formula]
**  Takuro SHINTANI. Source: Tokyo J. of Math. Volume 03, Number 2 (1980), 191-199<br>
+
**  Takuro SHINTANI. Source: Tokyo J. of Math. Volume 03, Number 2 (1980), 191-199
 
+
* Barnes, E. W. 2013. “The Genesis of the Double Gamma Functions.” Proceedings of the London Mathematical Society S1-31 (1): 358. doi:10.1112/plms/s1-31.1.358.
* http://www.jstor.org/action/doBasicSearch?Query=
+
[[분류:특수함수]]
* http://www.ams.org/mathscinet
 
* http://dx.doi.org/
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련도서</h5>
 
 
 
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
*  도서검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/mainSearch.do?query=
 
** http://book.daum.net/search/mainSearch.do?query=
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련기사</h5>
 
 
 
*  네이버 뉴스 검색 (키워드 수정)<br>
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">블로그</h5>
 
  
*  구글 블로그 검색<br>
+
==메타데이터==
** http://blogsearch.google.com/blogsearch?q=
+
===위키데이터===
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
+
* ID :  [https://www.wikidata.org/wiki/Q808463 Q808463]
* [http://math.dongascience.com/ 수학동아]
+
===Spacy 패턴 목록===
* [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS]
+
* [{'LOWER': 'barnes'}, {'LOWER': 'g'}, {'OP': '*'}, {'LEMMA': 'function'}]
* [http://betterexplained.com/ BetterExplained]
 

2021년 2월 17일 (수) 04:02 기준 최신판

개요

  • 더블 감마함수의 역수로 정의되는 함수
  • 성질\[G(1)=1\]\[G(s+1) =\Gamma(s)G(s)\]
  • 자연수 n에 대하여 다음이 성립한다\[G(n)=(n-1)!\times (n-2)! \times\cdots 2!\times 1!\]



점근급수

\[\log G(z+1)=\frac{1}{12}~-~\log A~+~\frac{z}{2}\log 2\pi~+~\left(\frac{z^2}{2} -\frac{1}{12}\right)\log z~-~\frac{3z^2}{4}~+~ \sum_{k=1}^{N}\frac{B_{2k + 2}}{4k\left(k + 1\right)z^{2k}}~+~O\left(\frac{1}{z^{2N + 2}}\right)\]

여기서 A는 Glaisher–Kinkelin 상수 \(A= e^{\frac{1}{12}-\zeta^\prime(-1)}= 1.28242712\dots\)



special values

  • A는 Glaisher–Kinkelin 상수\[G(\frac{1}{2})=2^{\frac{1}{24}}\cdot \pi^{-\frac{1}{4}}\cdot e^{\frac{1}{8}}\cdot A^{-\frac{3}{2}}\]\[G(\frac{3}{4})=2^{-\frac{1}{8}}\cdot \pi^{-\frac{1}{4}}\cdot e^{\frac{1}{8}}\cdot A^{-\frac{3}{2}}\] 또는 \(G(\frac{3}{4})=2^{-\frac{1}{8}}\cdot \pi^{-\frac{1}{4}}\cdot e^{\frac{3}{32}+\frac{G}{4\pi}}\cdot A^{-\frac{9}{8}}\cdot \Gamma(\frac{1}{4})^{\frac{1}{4}}\)



로그 삼각함수 적분과의 관계

\[\int_{0}^{t}\pi u \cot \pi u\,du=t\log {2\pi}+\log \frac{G(1-t)}{G(1+t)}\] \[\int_{0}^{t}\log(\sin \pi u)\,du=t\log(\frac{\sin \pi t}{2\pi})+\log \frac{G(1+t)}{G(1-t)}\]





역사


메모

관련된 항목들



수학용어번역


사전 형태의 자료


관련논문

  • Multiple Gamma and Related Functions
    • J. Choi, H. M. Srivastava, V.S. Adamchik , Applied Mathematics and Computation, 134 (2003), 515-533
  • A Proof of the Classical Kronecker Limit Formula
    • Takuro SHINTANI. Source: Tokyo J. of Math. Volume 03, Number 2 (1980), 191-199
  • Barnes, E. W. 2013. “The Genesis of the Double Gamma Functions.” Proceedings of the London Mathematical Society S1-31 (1): 358. doi:10.1112/plms/s1-31.1.358.

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'barnes'}, {'LOWER': 'g'}, {'OP': '*'}, {'LEMMA': 'function'}]