"베버(Weber) 모듈라 함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
20번째 줄: 20번째 줄:
  
 
 
 
 
 +
 +
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">q-초기하급수와의 관계</h5>
 +
 +
* [[q-초기하급수(q-hypergeometric series) (통합됨)|q-초기하급수(q-hypergeometric series)]] 의 공식<br><math>\prod_{n=0}^{\infty}(1+zq^n)=\sum_{n\geq 0}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n</math><br><math>\prod_{n=0}^{\infty}(1+zq^n)=\sum_{n\geq 0}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n</math><br>
 +
* \prod_{n=1}^{\infty} (1+q^{n})=<br>
 +
 +
<math>f_2(\tau)=\sqrt{2}q^{1/24} \prod_{n=1}^{\infty} (1+q^{n})=</math>
  
 
 
 
 
53번째 줄: 60번째 줄:
 
* [[데데킨트 에타함수]]<br>
 
* [[데데킨트 에타함수]]<br>
 
* [[로저스-라마누잔 항등식|로저스-라마누잔 연분수와 항등식]]<br>
 
* [[로저스-라마누잔 항등식|로저스-라마누잔 연분수와 항등식]]<br>
* [[3004476|로저스-라마누잔 항등식]]<br>
+
* [[q-초기하급수(q-hypergeometric series) (통합됨)|q-초기하급수(q-hypergeometric series)]]<br>
 +
*   <br>
  
 
 
 
 

2009년 10월 15일 (목) 07:46 판

이 항목의 스프링노트 원문주소

 

 

간단한 소개

 

\(f(\tau)=\frac{e^{-\frac{\pi i}{24}}\eta(\frac{\tau+1}{2})}{\eta(\tau)}=q^{-1/48} \prod_{n=1}^{\infty} (1+q^{n-\frac{1}{2}})\)

\(f_1(\tau)=\frac{\eta(\frac{\tau}{2})}{\eta(\tau)}=q^{-1/48} \prod_{n=1}^{\infty} (1-q^{n-\frac{1}{2}})\)

\(f_2(\tau)=\sqrt{2}\frac{\eta(2\tau)}{\eta(\tau)}=\sqrt{2}q^{1/24} \prod_{n=1}^{\infty} (1+q^{n})\)

여기서  \(\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1-q^{n})\) 는 데데킨트 에타함수

 

 

q-초기하급수와의 관계
  • q-초기하급수(q-hypergeometric series) 의 공식
    \(\prod_{n=0}^{\infty}(1+zq^n)=\sum_{n\geq 0}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n\)
    \(\prod_{n=0}^{\infty}(1+zq^n)=\sum_{n\geq 0}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n\)
  • \prod_{n=1}^{\infty} (1+q^{n})=

\(f_2(\tau)=\sqrt{2}q^{1/24} \prod_{n=1}^{\infty} (1+q^{n})=\)

 

 

재미있는 사실

 

 

 

역사

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그