"블로흐-비그너 다이로그(Bloch-Wigner dilogarithm)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
13번째 줄: 13번째 줄:
 
* [[로바체프스키 함수|로바체프스키와 클라우센 함수]] 항목 참조<br>
 
* [[로바체프스키 함수|로바체프스키와 클라우센 함수]] 항목 참조<br>
 
*  real analytic on <math>\mathbb{C}</math> except at the two point 0 and 1. <br>
 
*  real analytic on <math>\mathbb{C}</math> except at the two point 0 and 1. <br>
 +
 +
 
 +
 +
 
 +
 +
<h5 style="margin: 0px; line-height: 2em;">그래프와 등고선</h5>
 +
 +
*  복소평면에서 정의된 실수값을 갖는 연속함수<br>[https://lh3.googleusercontent.com/6fNC6GgNr8x-5tPJ25EpQ0G-I6ClWO8shf23vk_r2Atez5Yf1Lo0Wlv_Dyug0oIvTMwCiEKPg-U ]<br>
 +
*  다음과 같은 등고선을 얻는다<br>[https://lh4.googleusercontent.com/G7y5iGwLE5xbb68BMx8FrUvhBrY_lt_UStjUfO_ctlWQMsbL-wDVK6Cn5HiF7nMwo3p9SxA6e-g ]<br>
 +
 +
 
  
 
 
 
 
82번째 줄: 93번째 줄:
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 +
 +
 
  
 
 
 
 
89번째 줄: 102번째 줄:
 
<h5>매스매티카 파일 및 계산 리소스</h5>
 
<h5>매스매티카 파일 및 계산 리소스</h5>
  
*  
+
* https://docs.google.com/file/d/0B8XXo8Tve1cxS0U2bjRwSGtqV2M/edit
 
* http://www.wolframalpha.com/input/?i=
 
* http://www.wolframalpha.com/input/?i=
 
* http://functions.wolfram.com/
 
* http://functions.wolfram.com/
124번째 줄: 137번째 줄:
  
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서 및 추천도서</h5>
 
 
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
*  도서검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/mainSearch.do?query=
 
** http://book.daum.net/search/mainSearch.do?query=
 
  
 
 
 
 
  
 
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서 및 추천도서</h5>
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련기사</h5>
 
 
 
*  네이버 뉴스 검색 (키워드 수정)<br>
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
 
 
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">블로그</h5>
 
 
 
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
 
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
 
* [http://math.dongascience.com/ 수학동아]
 
* [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS]
 
* [http://betterexplained.com/ BetterExplained]
 

2012년 4월 20일 (금) 15:38 판

이 항목의 스프링노트 원문주소

 

 

개요
  • Dilogarithm
    \(\operatorname{Li}_2(z) = -\int_0^z{{\ln (1-t)}\over t} dt \) for \(z\in \mathbb C-[1,\infty)\)
  • Bloch-Wigner dilogarithm
    \(D(z)=\text{Im}(\operatorname{Li}_2(z))+\log|z|\arg(1-z)\)
  • 로바체프스키와 클라우센 함수 항목 참조
  • real analytic on \(\mathbb{C}\) except at the two point 0 and 1. 

 

 

그래프와 등고선
  • 복소평면에서 정의된 실수값을 갖는 연속함수
    [1]
  • 다음과 같은 등고선을 얻는다
    [2]

 

 

 

항등식

\(D(z)=D(1-\frac{1}{z})=D(\frac{1}{1-z})=-D(\frac{1}{z})=-D(1-z)=-D(\frac{z}{z-1})\)

  • Dilogarithm 함수가 만족시키는 공식을 깔끔하게 함
    \(\mbox{Li}_2(x)\),\(\mbox{Li}_2 \left(\frac{1}{1-x}\right)\),  \(\mbox{Li}_2 \left(1- \frac{1}{x} \right)\), \(-\mbox{Li}_2 \left( \frac{1}{x} \right)\),\(-\mbox{Li}_2 \left(1-x \right)\) , \(-\mbox{Li}_2 \left( \frac{x}{x-1} \right)\)

 

 

five-term relation

\(D(x)+D(y)+D\left( \frac{1-x}{1-xy} \right)+D(1-xy)+D\left( \frac{1-y}{1-xy} \right)=0\)

\(\mbox{Li}_2(x)+\mbox{Li}_2(y)+\mbox{Li}_2 \left( \frac{1-x}{1-xy} \right)+\mbox{Li}_2(1-xy)+\mbox{Li}_2 \left( \frac{1-y}{1-xy} \right)=\frac{\pi^2}{2}-\log(x)\log(1-x)-\log(y)\log(1-y)+\log (\frac{1-x}{1-xy})\log (\frac{1-y}{1-xy})\)

 

 

데데킨트 제타함수와의 관계
  • \(s=2\) 에서의 값
    복소이차수체의 데데킨트 제타함수
    \(\zeta_{K}(2)=\frac{\pi^2}{6\sqrt{|d_K|}}\sum_{(a,d_k)=1} (\frac{d_K}{a})D(e^{2\pi ia/|d_k|})\)
    \(\zeta_{\mathbb{Q}\sqrt{-7}}(2)=\frac{\pi^2}{3\sqrt{7}}(D(e^{2\pi i/7})+D(e^{4\pi i/7})-D(e^{6\pi i/7}))\)

 

 

역사

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

 

매스매티카 파일 및 계산 리소스

 

 

사전 형태의 자료

 

 

관련논문
  • The Bloch-Wigner-Ramakrishnan polylogarithm function, Don Zagier, Math-Annalen, pages 612–624, 1990. http://dx.doi.org/10.1007/BF01453591
  • Polylogarithms, Dedekind Zeta functions, and the algebraic K-theory of fields

 

 

관련도서 및 추천도서