"비유클리드 기하학"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
1번째 줄: | 1번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5> |
* [[비유클리드 기하학]] | * [[비유클리드 기하학]] | ||
23번째 줄: | 23번째 줄: | ||
− | ==== | + | ==== Subpages ==== |
* [[비유클리드 기하학]]<br> | * [[비유클리드 기하학]]<br> | ||
+ | ** [[구면(sphere)]]<br> | ||
** [[구면기하학]]<br> | ** [[구면기하학]]<br> | ||
** [[쌍곡기하학]]<br> | ** [[쌍곡기하학]]<br> | ||
− | ** [[ | + | ** [[유클리드평면]]<br> |
** [[푸앵카레 상반평면 모델]]<br> | ** [[푸앵카레 상반평면 모델]]<br> | ||
56번째 줄: | 57번째 줄: | ||
− | <h5> | + | <h5>역사</h5> |
* [[수학사연표 (역사)|수학사연표]] | * [[수학사연표 (역사)|수학사연표]] | ||
64번째 줄: | 65번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모</h5> |
70번째 줄: | 71번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들</h5> |
* [[반전사상(inversion)]] | * [[반전사상(inversion)]] | ||
* [[리만 사상 정리 Riemann mapping theorem and the uniformization theorem|Riemann mapping theorem and the uniformization theorem]] | * [[리만 사상 정리 Riemann mapping theorem and the uniformization theorem|Riemann mapping theorem and the uniformization theorem]] | ||
* [[가우스-보네 정리]] | * [[가우스-보네 정리]] | ||
− | * [[ADE의 수학]] | + | * [[ADE의 수학]] |
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5> |
* http://www.google.com/dictionary?langpair=en|ko&q= | * http://www.google.com/dictionary?langpair=en|ko&q= | ||
90번째 줄: | 91번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료</h5> |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
100번째 줄: | 101번째 줄: | ||
* http://www.wolframalpha.com/input/?i= | * http://www.wolframalpha.com/input/?i= | ||
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] | * [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] | ||
− | * [http://www.research.att.com/ | + | * [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br> |
** http://www.research.att.com/~njas/sequences/?q= | ** http://www.research.att.com/~njas/sequences/?q= | ||
159번째 줄: | 160번째 줄: | ||
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q= | * 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q= | ||
* 트렌비 블로그 검색 http://www.trenb.com/search.qst?q= | * 트렌비 블로그 검색 http://www.trenb.com/search.qst?q= | ||
− | |||
− |
2011년 11월 5일 (토) 19:16 판
이 항목의 스프링노트 원문주소
개요
- 2차원의 기하학은 다음의 세 가지 종류로 분류된다.
- 평면기하학 (Euclidean geometry)
- 구면기하학 (Spherical geometry)
- 쌍곡기하학 (Hyperbolic geometry)
- 주어진 곡면을 잘 변형시켜 서 모든 점이 일정한 곡률을 갖도록 해주면, 그 곡률은 양수가 되거나, 0이 되거나, 또는 음수가 되는데, 이는 가우스-보네 정리에 의하면, 곡면의 위상적 성질에 따라 결정된다.
- 즉, ‘위상적 성질이 기하학을 결정한다’. 이 때, 곡률의 부호에 따라 각각의 곡면을 위에 나열한 세가지 종류의 기하학으로 분류한다.
- 이 중에서 쌍곡기하학을 일컬어, 보통 비유클리드 기하학이라 한다
Subpages
재미있는 사실
많이 나오는 질문
관련된 고교수학 또는 대학수학
역사
메모
관련된 항목들
수학용어번역
사전 형태의 자료
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련도서 및 추천도서
- Poincare Half-Plane (A Gateway to Modern Geometry)
- S. Stahl
- S. Stahl
- Geometry of Surfaces
- John Stillwell
- 도서내검색
- 도서검색
관련논문
- How Hyperbolic Geometry Became Respectable
- Abe Shenitzer, The American Mathematical Monthly, Vol. 101, No. 5 (May, 1994), pp. 464-470
관련기사
네이버 뉴스 검색 (키워드 수정)
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=비유클리드
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
블로그
- 피타고라스의 창
- 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
- 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=