"삼각함수의 무한곱 표현"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “==관련도서== * 도서내검색<br> ** http://books.google.com/books?q= ** http://book.daum.net/search/contentSearch.do?query=” 문자열을 “” 문자열로)
41번째 줄: 41번째 줄:
 
 
 
 
  
==관련된 항목들[[로그 사인 적분 (log sine integrals)|로그 사인 적분]]==
+
==관련된 항목들==
 
+
* [[로그 사인 적분 (log sine integrals)]]
 
* [[감마함수]]
 
* [[감마함수]]
  

2012년 11월 19일 (월) 15:40 판

이 항목의 수학노트 원문주소

 

 

개요

  • 사인함수의 무한곱표현
    \(\frac{ \sin{x}}{x} = \left(1-\frac{x^2}{\pi ^2}\right) \left(1-\frac{x^2}{4 \pi ^2}\right) \left(1-\frac{x^2}{9 \pi ^2}\right) \cdots =\prod _{n=1}^{\infty } \left(1-\frac{x^2}{n^2\pi^2}\right)\)
    \(\sin{\pi x} = x \prod _{n=1}^{\infty } \left(1-\frac{x^2}{n^2}\right)\)
  • 감마함수 의 다음공식을 보이는데 응용할 수 있다
    \(\Gamma(1-z) \; \Gamma(z) = {\pi \over \sin{(\pi z)}} \,\!\)

 

 

사인의 무한곱

\(\sin{\pi z} = \pi z \prod _{n\neq 0}^{} \left(1-\frac{z}{n}\right)e^{z/n}\)

 

 

역사

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

매스매티카 파일 및 계산 리소스

 

 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트

 

 

 

관련논문