"상수곡률곡면과 사인-고든 방정식"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
이 항목의 수학노트 원문주소==
 
 
		
	
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)  | 
				Pythagoras0 (토론 | 기여)  잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)  | 
				||
| 1번째 줄: | 1번째 줄: | ||
| − | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소  | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소==  | 
* [[상수곡률곡면과 사인-고든 방정식]]  | * [[상수곡률곡면과 사인-고든 방정식]]  | ||
| 7번째 줄: | 7번째 줄: | ||
| − | ==개요  | + | ==개요==  | 
* [[비유클리드 기하학]] 에 대한 관심에서 상수곡률곡면을 찾으려는 시도가 생겨남  | * [[비유클리드 기하학]] 에 대한 관심에서 상수곡률곡면을 찾으려는 시도가 생겨남  | ||
| 16번째 줄: | 16번째 줄: | ||
| − | ==사인-고든 방정식  | + | ==사인-고든 방정식==  | 
*  곡면의 제1기본형식이 다음과 같이 주어지는 경우<br><math>E=1</math> , <math>F=\cos (\phi (x,t))</math>, <math>G=1</math><br>  | *  곡면의 제1기본형식이 다음과 같이 주어지는 경우<br><math>E=1</math> , <math>F=\cos (\phi (x,t))</math>, <math>G=1</math><br>  | ||
| 26번째 줄: | 26번째 줄: | ||
| − | ==크리스토펠 기호  | + | ==크리스토펠 기호==  | 
<math>\begin{array}{ll}  \Gamma _{11}^1 & \phi ^{(1,0)}(x,t) \cot (\phi (x,t)) \\  \Gamma _{12}^1 & 0 \\  \Gamma _{21}^1 & 0 \\  \Gamma _{22}^1 & \phi ^{(0,1)}(x,t) (-\csc (\phi (x,t))) \\  \Gamma _{11}^2 & \phi ^{(1,0)}(x,t) (-\csc (\phi (x,t))) \\  \Gamma _{12}^2 & 0 \\  \Gamma _{21}^2 & 0 \\  \Gamma _{22}^2 & \phi ^{(0,1)}(x,t) \cot (\phi (x,t)) \end{array}</math>  | <math>\begin{array}{ll}  \Gamma _{11}^1 & \phi ^{(1,0)}(x,t) \cot (\phi (x,t)) \\  \Gamma _{12}^1 & 0 \\  \Gamma _{21}^1 & 0 \\  \Gamma _{22}^1 & \phi ^{(0,1)}(x,t) (-\csc (\phi (x,t))) \\  \Gamma _{11}^2 & \phi ^{(1,0)}(x,t) (-\csc (\phi (x,t))) \\  \Gamma _{12}^2 & 0 \\  \Gamma _{21}^2 & 0 \\  \Gamma _{22}^2 & \phi ^{(0,1)}(x,t) \cot (\phi (x,t)) \end{array}</math>  | ||
| 34번째 줄: | 34번째 줄: | ||
| − | <h5 style="margin: 0px; line-height: 2em;">리만 텐서  | + | <h5 style="margin: 0px; line-height: 2em;">리만 텐서==  | 
<math>\begin{array}{ll}   \begin{array}{ll}  R_{111}^1 & 0 \\  R_{112}^1 & \phi ^{(1,1)}(x,t) (-\cot (\phi (x,t))) \end{array}  &  \begin{array}{ll}  R_{121}^1 & \phi ^{(1,1)}(x,t) \cot (\phi (x,t)) \\  R_{122}^1 & 0 \end{array}  \\   \begin{array}{ll}  R_{211}^1 & 0 \\  R_{212}^1 & \phi ^{(1,1)}(x,t) (-\csc (\phi (x,t))) \end{array}  &  \begin{array}{ll}  R_{221}^1 & \phi ^{(1,1)}(x,t) \csc (\phi (x,t)) \\  R_{222}^1 & 0 \end{array}  \\   \begin{array}{ll}  R_{111}^2 & 0 \\  R_{112}^2 & \phi ^{(1,1)}(x,t) \csc (\phi (x,t)) \end{array}  &  \begin{array}{ll}  R_{121}^2 & \phi ^{(1,1)}(x,t) (-\csc (\phi (x,t))) \\  R_{122}^2 & 0 \end{array}  \\   \begin{array}{ll}  R_{211}^2 & 0 \\  R_{212}^2 & \phi ^{(1,1)}(x,t) \cot (\phi (x,t)) \end{array}  &  \begin{array}{ll}  R_{221}^2 & \phi ^{(1,1)}(x,t) (-\cot (\phi (x,t))) \\  R_{222}^2 & 0 \end{array}  \end{array}</math>  | <math>\begin{array}{ll}   \begin{array}{ll}  R_{111}^1 & 0 \\  R_{112}^1 & \phi ^{(1,1)}(x,t) (-\cot (\phi (x,t))) \end{array}  &  \begin{array}{ll}  R_{121}^1 & \phi ^{(1,1)}(x,t) \cot (\phi (x,t)) \\  R_{122}^1 & 0 \end{array}  \\   \begin{array}{ll}  R_{211}^1 & 0 \\  R_{212}^1 & \phi ^{(1,1)}(x,t) (-\csc (\phi (x,t))) \end{array}  &  \begin{array}{ll}  R_{221}^1 & \phi ^{(1,1)}(x,t) \csc (\phi (x,t)) \\  R_{222}^1 & 0 \end{array}  \\   \begin{array}{ll}  R_{111}^2 & 0 \\  R_{112}^2 & \phi ^{(1,1)}(x,t) \csc (\phi (x,t)) \end{array}  &  \begin{array}{ll}  R_{121}^2 & \phi ^{(1,1)}(x,t) (-\csc (\phi (x,t))) \\  R_{122}^2 & 0 \end{array}  \\   \begin{array}{ll}  R_{211}^2 & 0 \\  R_{212}^2 & \phi ^{(1,1)}(x,t) \cot (\phi (x,t)) \end{array}  &  \begin{array}{ll}  R_{221}^2 & \phi ^{(1,1)}(x,t) (-\cot (\phi (x,t))) \\  R_{222}^2 & 0 \end{array}  \end{array}</math>  | ||
| 42번째 줄: | 42번째 줄: | ||
| − | <h5 style="margin: 0px; line-height: 2em;">가우스 곡률  | + | <h5 style="margin: 0px; line-height: 2em;">가우스 곡률==  | 
* <math>K=-\frac{\phi ^{(1,1)}(x,t)}{ (-\sin (\phi (x,t)))}</math><br>  | * <math>K=-\frac{\phi ^{(1,1)}(x,t)}{ (-\sin (\phi (x,t)))}</math><br>  | ||
| 54번째 줄: | 54번째 줄: | ||
| − | ==예  | + | ==예==  | 
* [[의구 (Pseudosphere)]]  | * [[의구 (Pseudosphere)]]  | ||
| 62번째 줄: | 62번째 줄: | ||
| − | ==역사  | + | ==역사==  | 
| 73번째 줄: | 73번째 줄: | ||
| − | ==메모  | + | ==메모==  | 
* [http://www.math.uci.edu/%7Ecterng/SGE.html http://www.math.uci.edu/~cterng/SGE.html]<br>  | * [http://www.math.uci.edu/%7Ecterng/SGE.html http://www.math.uci.edu/~cterng/SGE.html]<br>  | ||
| 87번째 줄: | 87번째 줄: | ||
| − | ==관련된 항목들  | + | ==관련된 항목들==  | 
* [[의구 (Pseudosphere)]]  | * [[의구 (Pseudosphere)]]  | ||
| 96번째 줄: | 96번째 줄: | ||
| − | ==매스매티카 파일 및 계산 리소스  | + | ==매스매티카 파일 및 계산 리소스==  | 
* https://docs.google.com/file/d/0B8XXo8Tve1cxNjQ1MjNhOTctNjVkNS00ZTQ0LWFkNDYtZDliYjg4YTU5Mzdj/edit  | * https://docs.google.com/file/d/0B8XXo8Tve1cxNjQ1MjNhOTctNjVkNS00ZTQ0LWFkNDYtZDliYjg4YTU5Mzdj/edit  | ||
| 113번째 줄: | 113번째 줄: | ||
| − | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역  | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역==  | 
*  단어사전<br>  | *  단어사전<br>  | ||
| 131번째 줄: | 131번째 줄: | ||
| − | ==사전 형태의 자료  | + | ==사전 형태의 자료==  | 
* http://ko.wikipedia.org/wiki/  | * http://ko.wikipedia.org/wiki/  | ||
| 143번째 줄: | 143번째 줄: | ||
| − | ==리뷰논문, 에세이, 강의노트  | + | ==리뷰논문, 에세이, 강의노트==  | 
* Robert McLachlan, [http://www.springerlink.com/content/x656505g28736tml/ A gallery of constant-negative-curvature surfaces] The Mathematical Intelligencer, 1994, Volume 16, Number 4, Pages 31-37  | * Robert McLachlan, [http://www.springerlink.com/content/x656505g28736tml/ A gallery of constant-negative-curvature surfaces] The Mathematical Intelligencer, 1994, Volume 16, Number 4, Pages 31-37  | ||
| 151번째 줄: | 151번째 줄: | ||
| − | ==관련논문  | + | ==관련논문==  | 
* http://www.jstor.org/action/doBasicSearch?Query=  | * http://www.jstor.org/action/doBasicSearch?Query=  | ||
| 161번째 줄: | 161번째 줄: | ||
| − | ==관련도서  | + | ==관련도서==  | 
* C. ROGERS, [http://www.amazon.com/B%C3%A4cklund-Darboux-Transformations-Applications-Mathematics/dp/0521012880 Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory]  | * C. ROGERS, [http://www.amazon.com/B%C3%A4cklund-Darboux-Transformations-Applications-Mathematics/dp/0521012880 Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory]  | ||
2012년 11월 1일 (목) 12:51 판
이 항목의 수학노트 원문주소==
 
 
개요
 
 
사인-고든 방정식
- 곡면의 제1기본형식이 다음과 같이 주어지는 경우
\(E=1\) , \(F=\cos (\phi (x,t))\), \(G=1\)
 
- 가우스 곡률 이 \(K=-1\)이 되도록 하는, 함수 \(\phi (x,t)\) 를 찾는 문제
 
- 함수 \(\phi (x,t)\) 가 사인-고든 방정식 을 만족시키는 경우, 상수곡률곡면을 얻는다
 
 
 
크리스토펠 기호
\(\begin{array}{ll}  \Gamma _{11}^1 & \phi ^{(1,0)}(x,t) \cot (\phi (x,t)) \\  \Gamma _{12}^1 & 0 \\  \Gamma _{21}^1 & 0 \\  \Gamma _{22}^1 & \phi ^{(0,1)}(x,t) (-\csc (\phi (x,t))) \\  \Gamma _{11}^2 & \phi ^{(1,0)}(x,t) (-\csc (\phi (x,t))) \\  \Gamma _{12}^2 & 0 \\  \Gamma _{21}^2 & 0 \\  \Gamma _{22}^2 & \phi ^{(0,1)}(x,t) \cot (\phi (x,t)) \end{array}\)
 
 
리만 텐서==
\(\begin{array}{ll}   \begin{array}{ll}  R_{111}^1 & 0 \\  R_{112}^1 & \phi ^{(1,1)}(x,t) (-\cot (\phi (x,t))) \end{array}  &  \begin{array}{ll}  R_{121}^1 & \phi ^{(1,1)}(x,t) \cot (\phi (x,t)) \\  R_{122}^1 & 0 \end{array}  \\   \begin{array}{ll}  R_{211}^1 & 0 \\  R_{212}^1 & \phi ^{(1,1)}(x,t) (-\csc (\phi (x,t))) \end{array}  &  \begin{array}{ll}  R_{221}^1 & \phi ^{(1,1)}(x,t) \csc (\phi (x,t)) \\  R_{222}^1 & 0 \end{array}  \\   \begin{array}{ll}  R_{111}^2 & 0 \\  R_{112}^2 & \phi ^{(1,1)}(x,t) \csc (\phi (x,t)) \end{array}  &  \begin{array}{ll}  R_{121}^2 & \phi ^{(1,1)}(x,t) (-\csc (\phi (x,t))) \\  R_{122}^2 & 0 \end{array}  \\   \begin{array}{ll}  R_{211}^2 & 0 \\  R_{212}^2 & \phi ^{(1,1)}(x,t) \cot (\phi (x,t)) \end{array}  &  \begin{array}{ll}  R_{221}^2 & \phi ^{(1,1)}(x,t) (-\cot (\phi (x,t))) \\  R_{222}^2 & 0 \end{array}  \end{array}\)
 
 
가우스 곡률==
- \(K=-\frac{\phi ^{(1,1)}(x,t)}{ (-\sin (\phi (x,t)))}\)
 
- \(K=-1\) 이 되려면, \(\phi ^{(1,1)}(x,t)=\sin (\phi (x,t))\) 을 만족시키면 된다
 
- 미분방정식 \(\phi ^{(1,1)}(x,t)=\sin (\phi (x,t))\) 은 빛원뿔(light cone) 좌표계에서의 사인-고든 방정식 이 된다
 
 
 
 
예
 
 
역사
 
 
 
메모
- http://www.math.uci.edu/~cterng/SGE.html
 
- 솔리톤 사인-고든 http://www.math.uci.edu/~cterng/geometry_of_solitons.pdf
 
- Nesterenko, V. V. 1980. “On the geometric origin of the equation ?,11 ? ?,22 = e? ? e-2?” Letters in Mathematical Physics 4 (6) (November): 451-456. doi:10.1007/BF00943430.
 
- É. G. Poznyak and E. V. Shikin, Surfaces of negative curvature Journal of Mathematical Sciences Volume 5, Number 6 (1976), 865-887
 
- http://rspa.royalsocietypublishing.org/content/459/2029/67.full.pdf
 
- Math Overflow http://mathoverflow.net/search?q=
 
 
 
관련된 항목들
 
 
매스매티카 파일 및 계산 리소스
- https://docs.google.com/file/d/0B8XXo8Tve1cxNjQ1MjNhOTctNjVkNS00ZTQ0LWFkNDYtZDliYjg4YTU5Mzdj/edit
 
- http://www.wolframalpha.com/input/?i=
 
- http://functions.wolfram.com/
 
- NIST Digital Library of Mathematical Functions
 
- Abramowitz and Stegun Handbook of mathematical functions
 
- The On-Line Encyclopedia of Integer Sequences
 
- Numbers, constants and computation
 
- 매스매티카 파일 목록
 
 
 
 
수학용어번역==
- 단어사전
 
- 발음사전 http://www.forvo.com/search/
 
- 대한수학회 수학 학술 용어집
 
- 한국통계학회 통계학 용어 온라인 대조표
 
- 남·북한수학용어비교
 
- 대한수학회 수학용어한글화 게시판
 
 
 
 
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
 
- http://en.wikipedia.org/wiki/
 
- The Online Encyclopaedia of Mathematics
 
- NIST Digital Library of Mathematical Functions
 
- The World of Mathematical Equations
 
 
 
리뷰논문, 에세이, 강의노트
- Robert McLachlan, A gallery of constant-negative-curvature surfaces The Mathematical Intelligencer, 1994, Volume 16, Number 4, Pages 31-37
 
 
 
관련논문
 
 
관련도서
\(E=1\) , \(F=\cos (\phi (x,t))\), \(G=1\)
가우스 곡률==
- \(K=-\frac{\phi ^{(1,1)}(x,t)}{ (-\sin (\phi (x,t)))}\)
 
- \(K=-1\) 이 되려면, \(\phi ^{(1,1)}(x,t)=\sin (\phi (x,t))\) 을 만족시키면 된다
 
- 미분방정식 \(\phi ^{(1,1)}(x,t)=\sin (\phi (x,t))\) 은 빛원뿔(light cone) 좌표계에서의 사인-고든 방정식 이 된다
 
 
 
 
예
역사
메모
- http://www.math.uci.edu/~cterng/SGE.html
 - 솔리톤 사인-고든 http://www.math.uci.edu/~cterng/geometry_of_solitons.pdf
 - Nesterenko, V. V. 1980. “On the geometric origin of the equation ?,11 ? ?,22 = e? ? e-2?” Letters in Mathematical Physics 4 (6) (November): 451-456. doi:10.1007/BF00943430.
 - É. G. Poznyak and E. V. Shikin, Surfaces of negative curvature Journal of Mathematical Sciences Volume 5, Number 6 (1976), 865-887
 - http://rspa.royalsocietypublishing.org/content/459/2029/67.full.pdf
 
- Math Overflow http://mathoverflow.net/search?q=
 
관련된 항목들
매스매티카 파일 및 계산 리소스
- https://docs.google.com/file/d/0B8XXo8Tve1cxNjQ1MjNhOTctNjVkNS00ZTQ0LWFkNDYtZDliYjg4YTU5Mzdj/edit
 - http://www.wolframalpha.com/input/?i=
 - http://functions.wolfram.com/
 - NIST Digital Library of Mathematical Functions
 - Abramowitz and Stegun Handbook of mathematical functions
 - The On-Line Encyclopedia of Integer Sequences
 - Numbers, constants and computation
 - 매스매티카 파일 목록