"상수곡률곡면과 사인-고든 방정식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소==
  
 
* [[상수곡률곡면과 사인-고든 방정식]]
 
* [[상수곡률곡면과 사인-고든 방정식]]
7번째 줄: 7번째 줄:
 
 
 
 
  
==개요</h5>
+
==개요==
  
 
* [[비유클리드 기하학]] 에 대한 관심에서 상수곡률곡면을 찾으려는 시도가 생겨남
 
* [[비유클리드 기하학]] 에 대한 관심에서 상수곡률곡면을 찾으려는 시도가 생겨남
16번째 줄: 16번째 줄:
 
 
 
 
  
==사인-고든 방정식</h5>
+
==사인-고든 방정식==
  
 
*  곡면의 제1기본형식이 다음과 같이 주어지는 경우<br><math>E=1</math> , <math>F=\cos (\phi (x,t))</math>, <math>G=1</math><br>
 
*  곡면의 제1기본형식이 다음과 같이 주어지는 경우<br><math>E=1</math> , <math>F=\cos (\phi (x,t))</math>, <math>G=1</math><br>
26번째 줄: 26번째 줄:
 
 
 
 
  
==크리스토펠 기호</h5>
+
==크리스토펠 기호==
  
 
<math>\begin{array}{ll}  \Gamma _{11}^1 & \phi ^{(1,0)}(x,t) \cot (\phi (x,t)) \\  \Gamma _{12}^1 & 0 \\  \Gamma _{21}^1 & 0 \\  \Gamma _{22}^1 & \phi ^{(0,1)}(x,t) (-\csc (\phi (x,t))) \\  \Gamma _{11}^2 & \phi ^{(1,0)}(x,t) (-\csc (\phi (x,t))) \\  \Gamma _{12}^2 & 0 \\  \Gamma _{21}^2 & 0 \\  \Gamma _{22}^2 & \phi ^{(0,1)}(x,t) \cot (\phi (x,t)) \end{array}</math>
 
<math>\begin{array}{ll}  \Gamma _{11}^1 & \phi ^{(1,0)}(x,t) \cot (\phi (x,t)) \\  \Gamma _{12}^1 & 0 \\  \Gamma _{21}^1 & 0 \\  \Gamma _{22}^1 & \phi ^{(0,1)}(x,t) (-\csc (\phi (x,t))) \\  \Gamma _{11}^2 & \phi ^{(1,0)}(x,t) (-\csc (\phi (x,t))) \\  \Gamma _{12}^2 & 0 \\  \Gamma _{21}^2 & 0 \\  \Gamma _{22}^2 & \phi ^{(0,1)}(x,t) \cot (\phi (x,t)) \end{array}</math>
34번째 줄: 34번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">리만 텐서</h5>
+
<h5 style="margin: 0px; line-height: 2em;">리만 텐서==
  
 
<math>\begin{array}{ll}  \begin{array}{ll}  R_{111}^1 & 0 \\  R_{112}^1 & \phi ^{(1,1)}(x,t) (-\cot (\phi (x,t))) \end{array}  &  \begin{array}{ll}  R_{121}^1 & \phi ^{(1,1)}(x,t) \cot (\phi (x,t)) \\  R_{122}^1 & 0 \end{array}  \\  \begin{array}{ll}  R_{211}^1 & 0 \\  R_{212}^1 & \phi ^{(1,1)}(x,t) (-\csc (\phi (x,t))) \end{array}  &  \begin{array}{ll}  R_{221}^1 & \phi ^{(1,1)}(x,t) \csc (\phi (x,t)) \\  R_{222}^1 & 0 \end{array}  \\  \begin{array}{ll}  R_{111}^2 & 0 \\  R_{112}^2 & \phi ^{(1,1)}(x,t) \csc (\phi (x,t)) \end{array}  &  \begin{array}{ll}  R_{121}^2 & \phi ^{(1,1)}(x,t) (-\csc (\phi (x,t))) \\  R_{122}^2 & 0 \end{array}  \\  \begin{array}{ll}  R_{211}^2 & 0 \\  R_{212}^2 & \phi ^{(1,1)}(x,t) \cot (\phi (x,t)) \end{array}  &  \begin{array}{ll}  R_{221}^2 & \phi ^{(1,1)}(x,t) (-\cot (\phi (x,t))) \\  R_{222}^2 & 0 \end{array}  \end{array}</math>
 
<math>\begin{array}{ll}  \begin{array}{ll}  R_{111}^1 & 0 \\  R_{112}^1 & \phi ^{(1,1)}(x,t) (-\cot (\phi (x,t))) \end{array}  &  \begin{array}{ll}  R_{121}^1 & \phi ^{(1,1)}(x,t) \cot (\phi (x,t)) \\  R_{122}^1 & 0 \end{array}  \\  \begin{array}{ll}  R_{211}^1 & 0 \\  R_{212}^1 & \phi ^{(1,1)}(x,t) (-\csc (\phi (x,t))) \end{array}  &  \begin{array}{ll}  R_{221}^1 & \phi ^{(1,1)}(x,t) \csc (\phi (x,t)) \\  R_{222}^1 & 0 \end{array}  \\  \begin{array}{ll}  R_{111}^2 & 0 \\  R_{112}^2 & \phi ^{(1,1)}(x,t) \csc (\phi (x,t)) \end{array}  &  \begin{array}{ll}  R_{121}^2 & \phi ^{(1,1)}(x,t) (-\csc (\phi (x,t))) \\  R_{122}^2 & 0 \end{array}  \\  \begin{array}{ll}  R_{211}^2 & 0 \\  R_{212}^2 & \phi ^{(1,1)}(x,t) \cot (\phi (x,t)) \end{array}  &  \begin{array}{ll}  R_{221}^2 & \phi ^{(1,1)}(x,t) (-\cot (\phi (x,t))) \\  R_{222}^2 & 0 \end{array}  \end{array}</math>
42번째 줄: 42번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">가우스 곡률</h5>
+
<h5 style="margin: 0px; line-height: 2em;">가우스 곡률==
  
 
* <math>K=-\frac{\phi ^{(1,1)}(x,t)}{ (-\sin (\phi (x,t)))}</math><br>
 
* <math>K=-\frac{\phi ^{(1,1)}(x,t)}{ (-\sin (\phi (x,t)))}</math><br>
54번째 줄: 54번째 줄:
 
 
 
 
  
==예</h5>
+
==예==
  
 
* [[의구 (Pseudosphere)]]
 
* [[의구 (Pseudosphere)]]
62번째 줄: 62번째 줄:
 
 
 
 
  
==역사</h5>
+
==역사==
  
 
 
 
 
73번째 줄: 73번째 줄:
 
 
 
 
  
==메모</h5>
+
==메모==
  
 
* [http://www.math.uci.edu/%7Ecterng/SGE.html http://www.math.uci.edu/~cterng/SGE.html]<br>
 
* [http://www.math.uci.edu/%7Ecterng/SGE.html http://www.math.uci.edu/~cterng/SGE.html]<br>
87번째 줄: 87번째 줄:
 
 
 
 
  
==관련된 항목들</h5>
+
==관련된 항목들==
  
 
* [[의구 (Pseudosphere)]]
 
* [[의구 (Pseudosphere)]]
96번째 줄: 96번째 줄:
 
 
 
 
  
==매스매티카 파일 및 계산 리소스</h5>
+
==매스매티카 파일 및 계산 리소스==
  
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxNjQ1MjNhOTctNjVkNS00ZTQ0LWFkNDYtZDliYjg4YTU5Mzdj/edit
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxNjQ1MjNhOTctNjVkNS00ZTQ0LWFkNDYtZDliYjg4YTU5Mzdj/edit
113번째 줄: 113번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역==
  
 
*  단어사전<br>
 
*  단어사전<br>
131번째 줄: 131번째 줄:
 
 
 
 
  
==사전 형태의 자료</h5>
+
==사전 형태의 자료==
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
143번째 줄: 143번째 줄:
 
 
 
 
  
==리뷰논문, 에세이, 강의노트</h5>
+
==리뷰논문, 에세이, 강의노트==
  
 
* Robert McLachlan, [http://www.springerlink.com/content/x656505g28736tml/ A gallery of constant-negative-curvature surfaces] The Mathematical Intelligencer, 1994, Volume 16, Number 4, Pages 31-37
 
* Robert McLachlan, [http://www.springerlink.com/content/x656505g28736tml/ A gallery of constant-negative-curvature surfaces] The Mathematical Intelligencer, 1994, Volume 16, Number 4, Pages 31-37
151번째 줄: 151번째 줄:
 
 
 
 
  
==관련논문</h5>
+
==관련논문==
  
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.jstor.org/action/doBasicSearch?Query=
161번째 줄: 161번째 줄:
 
 
 
 
  
==관련도서</h5>
+
==관련도서==
  
 
* C. ROGERS, [http://www.amazon.com/B%C3%A4cklund-Darboux-Transformations-Applications-Mathematics/dp/0521012880 Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory]
 
* C. ROGERS, [http://www.amazon.com/B%C3%A4cklund-Darboux-Transformations-Applications-Mathematics/dp/0521012880 Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory]

2012년 11월 1일 (목) 12:51 판

이 항목의 수학노트 원문주소==    

개요

 

 

사인-고든 방정식

  • 곡면의 제1기본형식이 다음과 같이 주어지는 경우
    \(E=1\) , \(F=\cos (\phi (x,t))\), \(G=1\)
  • 가우스 곡률 이 \(K=-1\)이 되도록 하는, 함수 \(\phi (x,t)\) 를 찾는 문제
  • 함수 \(\phi (x,t)\) 가 사인-고든 방정식 을 만족시키는 경우, 상수곡률곡면을 얻는다

 

 

크리스토펠 기호

\(\begin{array}{ll} \Gamma _{11}^1 & \phi ^{(1,0)}(x,t) \cot (\phi (x,t)) \\ \Gamma _{12}^1 & 0 \\ \Gamma _{21}^1 & 0 \\ \Gamma _{22}^1 & \phi ^{(0,1)}(x,t) (-\csc (\phi (x,t))) \\ \Gamma _{11}^2 & \phi ^{(1,0)}(x,t) (-\csc (\phi (x,t))) \\ \Gamma _{12}^2 & 0 \\ \Gamma _{21}^2 & 0 \\ \Gamma _{22}^2 & \phi ^{(0,1)}(x,t) \cot (\phi (x,t)) \end{array}\)

 

 

리만 텐서== \(\begin{array}{ll} \begin{array}{ll} R_{111}^1 & 0 \\ R_{112}^1 & \phi ^{(1,1)}(x,t) (-\cot (\phi (x,t))) \end{array} & \begin{array}{ll} R_{121}^1 & \phi ^{(1,1)}(x,t) \cot (\phi (x,t)) \\ R_{122}^1 & 0 \end{array} \\ \begin{array}{ll} R_{211}^1 & 0 \\ R_{212}^1 & \phi ^{(1,1)}(x,t) (-\csc (\phi (x,t))) \end{array} & \begin{array}{ll} R_{221}^1 & \phi ^{(1,1)}(x,t) \csc (\phi (x,t)) \\ R_{222}^1 & 0 \end{array} \\ \begin{array}{ll} R_{111}^2 & 0 \\ R_{112}^2 & \phi ^{(1,1)}(x,t) \csc (\phi (x,t)) \end{array} & \begin{array}{ll} R_{121}^2 & \phi ^{(1,1)}(x,t) (-\csc (\phi (x,t))) \\ R_{122}^2 & 0 \end{array} \\ \begin{array}{ll} R_{211}^2 & 0 \\ R_{212}^2 & \phi ^{(1,1)}(x,t) \cot (\phi (x,t)) \end{array} & \begin{array}{ll} R_{221}^2 & \phi ^{(1,1)}(x,t) (-\cot (\phi (x,t))) \\ R_{222}^2 & 0 \end{array} \end{array}\)    
가우스 곡률==
  • \(K=-\frac{\phi ^{(1,1)}(x,t)}{ (-\sin (\phi (x,t)))}\)
  • \(K=-1\) 이 되려면, \(\phi ^{(1,1)}(x,t)=\sin (\phi (x,t))\) 을 만족시키면 된다
  • 미분방정식 \(\phi ^{(1,1)}(x,t)=\sin (\phi (x,t))\) 은 빛원뿔(light cone) 좌표계에서의 사인-고든 방정식 이 된다
     

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

매스매티카 파일 및 계산 리소스

 

 

 

수학용어번역==      

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트

 

 

관련논문

 

 

관련도서