"수식 표현 안내"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
왼쪽의 수식을 입력하고 싶으면, 오른쪽의 주소를 적당히 변형, 복사하여, '삽입'->'이미지 첨부'->'외부 URL로 첨부하기' 를 선택.
+
왼쪽의 수식을 입력하고 싶으면, 오른쪽의 주소를 적당히 변형, 복사하여, '삽입'->'이미지 첨부'->'외부 URL로 첨부하기' 를 선택. (powered by MIMETEX)
 +
 
 +
 
 +
 
 +
수식의 구조는 [http://bomber0.byus.net/mimetex/mimetex.cgi? ]http://bomber0.byus.net/mimetex/mimetex.cgi? + LaTeX 명령어
 +
 
 +
LaTeX 명령어 테스트는 http://www.forkosh.dreamhost.com/source_mimetex.html#preview 에서 한 뒤, 복사함
  
 
{| class="datatable"
 
{| class="datatable"
20번째 줄: 26번째 줄:
 
| http://bomber0.byus.net/mimetex/mimetex.cgi?720\div12=60
 
| http://bomber0.byus.net/mimetex/mimetex.cgi?720\div12=60
 
|-
 
|-
|  
+
| <math>\large f^\prime(x)\ =        \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}</math>
| http://www.forkosh.dreamhost.com/cgi-bin/mimetex.cgi?formdata=%5Clarge+f%5E%5Cprime%28x%29%5C+%3D+++++++++%5Clim_%7B%5CDelta+x%5Cto0%7D%5Cfrac%7Bf%28x%2B%5CDelta+x%29-f%28x%29%7D%7B%5CDelta+x%7D
+
| http://bomber0.byus.net/mimetex/mimetex.cgi?\large f^\prime(x)\ =         \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}
 
|-
 
|-
|  
+
| <math>\Large A\ =\ \large\left(        \begin{array}{c.cccc}&1&2&\cdots&n\\        \hdash1&a_{11}&a_{12}&\cdots&a_{1n}\\        2&a_{21}&a_{22}&\cdots&a_{2n}\\        \vdots&\vdots&\vdots&\ddots&\vdots\\        n&a_{n1}&a_{n2}&\cdots&a_{nn}\end{array}\right)</math>
|  
+
| http://bomber0.byus.net/mimetex/mimetex.cgi?\Large A\ =\ \large\left(         \begin{array}{c.cccc}&1&2&\cdots&n\\         \hdash1&a_{11}&a_{12}&\cdots&a_{1n}\\         2&a_{21}&a_{22}&\cdots&a_{2n}\\         \vdots&\vdots&\vdots&\ddots&\vdots\\         n&a_{n1}&a_{n2}&\cdots&a_{nn}\end{array}\right)
 
|-
 
|-
|  
+
| <math>\normalsize        \left(\large\begin{array}{GC+23}        \varepsilon_x\\\varepsilon_y\\\varepsilon_z\\\gamma_{xy}\\        \gamma_{xz}\\\gamma_{yz}\end{array}\right)\ {\Large=}        \ \left[\begin{array}{CC}        \begin{array}\frac1{E_{\fs{+1}x}}        &-\frac{\nu_{xy}}{E_{\fs{+1}x}}        &-\frac{\nu_{\fs{+1}xz}}{E_{\fs{+1}x}}\\        -\frac{\nu_{yx}}{E_y}&\frac1{E_{y}}&-\frac{\nu_{yz}}{E_y}\\        -\frac{\nu_{\fs{+1}zx}}{E_{\fs{+1}z}}&        -\frac{\nu_{zy}}{E_{\fs{+1}z}}        &\frac1{E_{\fs{+1}z}}\end{array} & {\LARGE 0} \\        {\LARGE 0} & \begin{array}\frac1{G_{xy}}&&\\        &\frac1{G_{\fs{+1}xz}}&\\&&\frac1{G_{yz}}\end{array}        \end{array}\right]        \ \left(\large\begin{array}        \sigma_x\\\sigma_y\\\sigma_z\\\tau_{xy}\\\tau_{xz}\\\tau_{yz}        \end{array}\right)</math>
|  
+
| http://bomber0.byus.net/mimetex/mimetex.cgi?\normalsize         \left(\large\begin{array}{GC+23}         \varepsilon_x\\\varepsilon_y\\\varepsilon_z\\\gamma_{xy}\\         \gamma_{xz}\\\gamma_{yz}\end{array}\right)\ {\Large=}         \ \left[\begin{array}{CC}         \begin{array}\frac1{E_{\fs{+1}x}}         &-\frac{\nu_{xy}}{E_{\fs{+1}x}}         &-\frac{\nu_{\fs{+1}xz}}{E_{\fs{+1}x}}\\         -\frac{\nu_{yx}}{E_y}&\frac1{E_{y}}&-\frac{\nu_{yz}}{E_y}\\         -\frac{\nu_{\fs{+1}zx}}{E_{\fs{+1}z}}&         -\frac{\nu_{zy}}{E_{\fs{+1}z}}         &\frac1{E_{\fs{+1}z}}\end{array} & {\LARGE 0} \\         {\LARGE 0} & \begin{array}\frac1{G_{xy}}&&\\         &\frac1{G_{\fs{+1}xz}}&\\&&\frac1{G_{yz}}\end{array}         \end{array}\right]         \ \left(\large\begin{array}         \sigma_x\\\sigma_y\\\sigma_z\\\tau_{xy}\\\tau_{xz}\\\tau_{yz}         \end{array}\right)
 
|-
 
|-
 
|  
 
|  
|  
+
| \Large\left.\begin{eqnarray}    x+y+z&=&3\\2y&=&x+z\\2x+y&=&z\end{eqnarray}\right\}
 
|-
 
|-
 
|  
 
|  

2008년 10월 17일 (금) 20:16 판

왼쪽의 수식을 입력하고 싶으면, 오른쪽의 주소를 적당히 변형, 복사하여, '삽입'->'이미지 첨부'->'외부 URL로 첨부하기' 를 선택. (powered by MIMETEX)

 

수식의 구조는 [1]http://bomber0.byus.net/mimetex/mimetex.cgi? + LaTeX 명령어

LaTeX 명령어 테스트는 http://www.forkosh.dreamhost.com/source_mimetex.html#preview 에서 한 뒤, 복사함

\(x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\)

http://bomber0.byus.net/mimetex/mimetex.cgi?x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}

\(e^{i \pi} +1 = 0\) http://bomber0.byus.net/mimetex/mimetex.cgi?e^{i\pi}+1=0
\(2\pi-3\times\frac{3\pi}{5}=\frac{\pi}{5}\) http://bomber0.byus.net/mimetex/mimetex.cgi?2\pi-3\times\frac{3\pi}{5}=\frac{\pi}{5}
\(\frac{\sqrt{3}}{5}\) http://bomber0.byus.net/mimetex/mimetex.cgi?\frac{\sqrt{3}}{5}
\(720\div12=60\) http://bomber0.byus.net/mimetex/mimetex.cgi?720\div12=60
\(\large f^\prime(x)\ = \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}\) http://bomber0.byus.net/mimetex/mimetex.cgi?\large f^\prime(x)\ =         \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}
\(\Large A\ =\ \large\left( \begin{array}{c.cccc}&1&2&\cdots&n\\ \hdash1&a_{11}&a_{12}&\cdots&a_{1n}\\ 2&a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ n&a_{n1}&a_{n2}&\cdots&a_{nn}\end{array}\right)\) http://bomber0.byus.net/mimetex/mimetex.cgi?\Large A\ =\ \large\left(         \begin{array}{c.cccc}&1&2&\cdots&n\\         \hdash1&a_{11}&a_{12}&\cdots&a_{1n}\\         2&a_{21}&a_{22}&\cdots&a_{2n}\\         \vdots&\vdots&\vdots&\ddots&\vdots\\         n&a_{n1}&a_{n2}&\cdots&a_{nn}\end{array}\right)
\(\normalsize \left(\large\begin{array}{GC+23} \varepsilon_x\\\varepsilon_y\\\varepsilon_z\\\gamma_{xy}\\ \gamma_{xz}\\\gamma_{yz}\end{array}\right)\ {\Large=} \ \left[\begin{array}{CC} \begin{array}\frac1{E_{\fs{+1}x}} &-\frac{\nu_{xy}}{E_{\fs{+1}x}} &-\frac{\nu_{\fs{+1}xz}}{E_{\fs{+1}x}}\\ -\frac{\nu_{yx}}{E_y}&\frac1{E_{y}}&-\frac{\nu_{yz}}{E_y}\\ -\frac{\nu_{\fs{+1}zx}}{E_{\fs{+1}z}}& -\frac{\nu_{zy}}{E_{\fs{+1}z}} &\frac1{E_{\fs{+1}z}}\end{array} & {\LARGE 0} \\ {\LARGE 0} & \begin{array}\frac1{G_{xy}}&&\\ &\frac1{G_{\fs{+1}xz}}&\\&&\frac1{G_{yz}}\end{array} \end{array}\right] \ \left(\large\begin{array} \sigma_x\\\sigma_y\\\sigma_z\\\tau_{xy}\\\tau_{xz}\\\tau_{yz} \end{array}\right)\) http://bomber0.byus.net/mimetex/mimetex.cgi?\normalsize         \left(\large\begin{array}{GC+23}         \varepsilon_x\\\varepsilon_y\\\varepsilon_z\\\gamma_{xy}\\         \gamma_{xz}\\\gamma_{yz}\end{array}\right)\ {\Large=}         \ \left[\begin{array}{CC}         \begin{array}\frac1{E_{\fs{+1}x}}         &-\frac{\nu_{xy}}{E_{\fs{+1}x}}         &-\frac{\nu_{\fs{+1}xz}}{E_{\fs{+1}x}}\\         -\frac{\nu_{yx}}{E_y}&\frac1{E_{y}}&-\frac{\nu_{yz}}{E_y}\\         -\frac{\nu_{\fs{+1}zx}}{E_{\fs{+1}z}}&         -\frac{\nu_{zy}}{E_{\fs{+1}z}}         &\frac1{E_{\fs{+1}z}}\end{array} & {\LARGE 0} \\         {\LARGE 0} & \begin{array}\frac1{G_{xy}}&&\\         &\frac1{G_{\fs{+1}xz}}&\\&&\frac1{G_{yz}}\end{array}         \end{array}\right]         \ \left(\large\begin{array}         \sigma_x\\\sigma_y\\\sigma_z\\\tau_{xy}\\\tau_{xz}\\\tau_{yz}         \end{array}\right)
  \Large\left.\begin{eqnarray}    x+y+z&=&3\\2y&=&x+z\\2x+y&=&z\end{eqnarray}\right\}