"수식 표현 안내"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
85번째 줄: 85번째 줄:
 
# \Large\overbrace{a,...,a}^{\text{k a^,s}},    \underbrace{b,...,b}_{\text{l b^,s}}\hspace{10}    \large\underbrace{\overbrace{a...a}^{\text{k a^,s}},    \overbrace{b...b}^{\text{l b^,s}}}_{\text{k+l elements}}
 
# \Large\overbrace{a,...,a}^{\text{k a^,s}},    \underbrace{b,...,b}_{\text{l b^,s}}\hspace{10}    \large\underbrace{\overbrace{a...a}^{\text{k a^,s}},    \overbrace{b...b}^{\text{l b^,s}}}_{\text{k+l elements}}
  
* <math>\normalsize        \left(\large\begin{array}{GC+23}        \varepsilon_x\\\varepsilon_y\\\varepsilon_z\\\gamma_{xy}\\        \gamma_{xz}\\\gamma_{yz}\end{array}\right)\ {\Large=}        \ \left[\begin{array}{CC}        \begin{array}\frac1{E_{\fs{+1}x}}        &-\frac{\nu_{xy}}{E_{\fs{+1}x}}        &-\frac{\nu_{\fs{+1}xz}}{E_{\fs{+1}x}}\\        -\frac{\nu_{yx}}{E_y}&\frac1{E_{y}}&-\frac{\nu_{yz}}{E_y}\\        -\frac{\nu_{\fs{+1}zx}}{E_{\fs{+1}z}}&        -\frac{\nu_{zy}}{E_{\fs{+1}z}}        &\frac1{E_{\fs{+1}z}}\end{array} & {\LARGE 0} \\        {\LARGE 0} & \begin{array}\frac1{G_{xy}}&&\\        &\frac1{G_{\fs{+1}xz}}&\\&&\frac1{G_{yz}}\end{array}        \end{array}\right]        \ \left(\large\begin{array}        \sigma_x\\\sigma_y\\\sigma_z\\\tau_{xy}\\\tau_{xz}\\\tau_{yz}        \end{array}\right)</math>
+
* <br>
 
 
# \normalsize         \left(\large\begin{array}{GC+23}         \varepsilon_x\\\varepsilon_y\\\varepsilon_z\\\gamma_{xy}\\         \gamma_{xz}\\\gamma_{yz}\end{array}\right)\ {\Large=}         \ \left[\begin{array}{CC}         \begin{array}\frac1{E_{\fs{+1}x}}         &-\frac{\nu_{xy}}{E_{\fs{+1}x}}         &-\frac{\nu_{\fs{+1}xz}}{E_{\fs{+1}x}}\\         -\frac{\nu_{yx}}{E_y}&\frac1{E_{y}}&-\frac{\nu_{yz}}{E_y}\\         -\frac{\nu_{\fs{+1}zx}}{E_{\fs{+1}z}}&         -\frac{\nu_{zy}}{E_{\fs{+1}z}}         &\frac1{E_{\fs{+1}z}}\end{array} & {\LARGE 0} \\         {\LARGE 0} & \begin{array}\frac1{G_{xy}}&&\\         &\frac1{G_{\fs{+1}xz}}&\\&&\frac1{G_{yz}}\end{array}         \end{array}\right]         \ \left(\large\begin{array}         \sigma_x\\\sigma_y\\\sigma_z\\\tau_{xy}\\\tau_{xz}\\\tau_{yz}         \end{array}\right)
 
 
 
 
 
  
 
*  
 
*  
103번째 줄: 99번째 줄:
 
# \exists c \in (a,b) \quad \mathbf{s.t.} \quad f'(c)=\frac{f(b)-f(a)}{b-a}
 
# \exists c \in (a,b) \quad \mathbf{s.t.} \quad f'(c)=\frac{f(b)-f(a)}{b-a}
  
*  
+
<br>
 
 
# E=-N\frac{d\Phi}{dt}
 
 
 
*
 
 
 
# \mathbf{X}=\left(\begin{array}{ccc}x_{11} & x_{12} & \ldots } & x_{22} & \ldots  & \vdots & \ddots\end{array} \right)
 
  
 
<br>
 
<br>
 
<br>
 
<br>

2009년 8월 13일 (목) 20:57 판

 

하위페이지

 

 

\(\chi(t)=\left(\frac{t}{p}\right)\)

\(\chi(t)=$\left(\frac{t}{p}\right)\)

 

 

LaTeX 명령예

\(\today\)

 

  • \(x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\)
  1. x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}
  • \(e^{i \pi} +1 = 0\)
  1. e^{i\pi}+1=0
  • \(2\pi-3\times\frac{3\pi}{5}=\frac{\pi}{5}\)
  1. 2\pi-3\times\frac{3\pi}{5}=\frac{\pi}{5}
  • \(\frac{\sqrt{3}}{5}\)
  1. \frac{\sqrt{3}}{5}
  • \(720\div12=60\)
  1. 720\div12=60
  • \(\large f^\prime(x)\ = \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}\)
  1. \large f^\prime(x)\ =         \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}
  • \(\Large A\ =\ \large\left( \begin{array}{c.cccc}&1&2&\cdots&n\\ \hdash1&a_{11}&a_{12}&\cdots&a_{1n}\\ 2&a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ n&a_{n1}&a_{n2}&\cdots&a_{nn}\end{array}\right)\)
  1. \Large A\ =\ \large\left(         \begin{array}{c.cccc}&1&2&\cdots&n\\         \hdash1&a_{11}&a_{12}&\cdots&a_{1n}\\         2&a_{21}&a_{22}&\cdots&a_{2n}\\         \vdots&\vdots&\vdots&\ddots&\vdots\\         n&a_{n1}&a_{n2}&\cdots&a_{nn}\end{array}\right)
  • \(\LARGE\tilde y=\left\{ {\ddot x\text{ if $\vec x$ odd}\atop\hat{\,\bar x+1}\text{ if even}}\right.\)
  1. \LARGE\tilde y=\left\{  {\ddot x\text{ if $\vec x$ odd}\atop\hat{\,\bar x+1}\text{ if even}}\right.
  1. \Large\left.\begin{eqnarray}    x+y+z&=&3\\2y&=&x+z\\2x+y&=&z\end{eqnarray}\right\}
  • \(\int e^{-\frac{x^2}{2}} dx\)
  1. \int%20e^{-\frac{x^2}{2}}%20dx

\(e^x=\lim_{n\to\infty} \left(1+\frac~xn\right)^n\)

  1. e^x=\lim_{n\to\infty} \left(1+\frac~xn\right)^n
  • \(\Large\begin{array}{rccclBCB} &f&\longr[75]^{\alpha:{\normalsize f\rightar~g}}&g\\ \large\gamma&\longd[50]&&\longd[50]&\large\gamma\\ &u&\longr[75]_\beta&v\end{array}\)
  1. \Large\begin{array}{rccclBCB}    &f&\longr[75]^{\alpha:{\normalsize f\rightar~g}}&g\\    \large\gamma&\longd[50]&&\longd[50]&\large\gamma\\    &u&\longr[75]_\beta&v\end{array}
  • \(\Large\overbrace{a,...,a}^{\text{k a^,s}}, \underbrace{b,...,b}_{\text{l b^,s}}\hspace{10} \large\underbrace{\overbrace{a...a}^{\text{k a^,s}}, \overbrace{b...b}^{\text{l b^,s}}}_{\text{k+l elements}}\)
  1. \Large\overbrace{a,...,a}^{\text{k a^,s}},    \underbrace{b,...,b}_{\text{l b^,s}}\hspace{10}    \large\underbrace{\overbrace{a...a}^{\text{k a^,s}},    \overbrace{b...b}^{\text{l b^,s}}}_{\text{k+l elements}}

  1. \sum_{k=1}^{\infty}\frac{1}{k^2}=\frac{\pi^2}{6}
  1. \int_{a}^{b}f(x)dx=F(b)-F(a)
  1. \exists c \in (a,b) \quad \mathbf{s.t.} \quad f'(c)=\frac{f(b)-f(a)}{b-a}