"5차방정식과 근의 공식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 위치를 <a href="/pages/3773955">피타고라스</a>페이지로 이동하였습니다.)
2번째 줄: 2번째 줄:
  
 
*  
 
*  
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">Monodromy proof</h5>
 +
 +
Consider <math>3w^5-25w^3+60w-z=0</math>.
 +
 +
For <math>z=\pm 38</math> and <math>z=\pm 16</math>, the above equation has four distinct roots.
 +
 +
These are the branch points and determines the Riemann surfaces.
 +
 +
Then the monodromy group is acting as a permutation of sheets and not solvable.
 +
 +
(This is a little different from the Galois group.)
 +
 +
We can apply this monodromy idea to the computation of Galois groups of number fields.
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">regular proof</h5>
 +
 +
<math>f(x)=2x^5-5x^4+5</math> is the irreducible polynomial of degree 5 over the rationals.
 +
 +
It has two complex and 3 real roots.
 +
 +
This implies the Galois group is <math>S_5</math>.
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">Sketch of the original proof</h5>
 +
 +
We start from the field of symmetric functions.
 +
 +
Essentially, we are studying the radical extension of that base field.
 +
 +
The proof is consisted of two steps.
 +
 +
1. radicals to express the quintic formula can be expressed in terms of roots
 +
 +
2. the behavior of radicals under permutations
 +
 +
<math>K=\mathbb{C}(x_1,\cdots,x_n)</math>
 +
 +
<math>F=\mathbb{C}(s_1,\cdots,s_n)</math>
 +
 +
 
 +
 +
 
 +
 +
step 1
  
 
 
 
 
27번째 줄: 83번째 줄:
 
 
 
 
  
<h5>표준적인 도서 및 추천도서</h5>
+
<h5>링크</h5>
  
 
+
* [http://en.wikipedia.org/wiki/Abel%E2%80%93Ruffini_theorem http://en.wikipedia.org/wiki/Abel–Ruffini_theorem]
 +
* [http://en.wikipedia.org/wiki/Abel%E2%80%93Ruffini_theorem ]http://fermatslasttheorem.blogspot.com/2008/10/abels-impossibility-proof.html<br>
  
 
 
 
 
 
<h5>위키링크</h5>
 
 
* http://en.wikipedia.org/wiki/
 
  
 
 
 
 
42번째 줄: 95번째 줄:
  
 
*  Abel's Proof<br>
 
*  Abel's Proof<br>
** Peter Pesic
+
** Peter Pesic, Chapter 6. 'Abel's proof' 85-94p ([[2284146/attachments/1125756|pdf]])
** Chapter 6. 'Abel's proof' 85-94p ([[2284146/attachments/1125756|pdf]])
 
 
* [http://www.amazon.com/Galois-Theory-Algebraic-Equations-Jean-Pierre/dp/9810245416/ref=sr_1_1/192-3053250-5244809?ie=UTF8&s=books&qid=1228931227&sr=1-1 Galois' Theory of Algebraic Equations]<br>
 
* [http://www.amazon.com/Galois-Theory-Algebraic-Equations-Jean-Pierre/dp/9810245416/ref=sr_1_1/192-3053250-5244809?ie=UTF8&s=books&qid=1228931227&sr=1-1 Galois' Theory of Algebraic Equations]<br>
** Jean-Pierre Tignol
+
** Jean-Pierre Tignol, Chapter 13.  Ruffini and Abel on general equations ([[2284146/attachments/1015504|pdf]])
** Chapter 13.  Ruffini and Abel on general equations ([[2284146/attachments/1015504|pdf]])
 
 
* [http://www.amazon.com/Functions-Integrals-Translations-Mathematical-Monographs/dp/0821805878 Elliptic functions and elliptic integrals][http://www.amazon.com/exec/obidos/search-handle-url/ref=ntt_athr_dp_sr_1?%5Fencoding=UTF8&search-type=ss&index=books&field-author=Viktor%20Prasolov ]<br>
 
* [http://www.amazon.com/Functions-Integrals-Translations-Mathematical-Monographs/dp/0821805878 Elliptic functions and elliptic integrals][http://www.amazon.com/exec/obidos/search-handle-url/ref=ntt_athr_dp_sr_1?%5Fencoding=UTF8&search-type=ss&index=books&field-author=Viktor%20Prasolov ]<br>
** Viktor Prasolov, Yuri Solovyev
+
** Viktor Prasolov, Yuri Solovyev, 6.5 The Abel theorem on the solvability in radicals of the general quinti equation ([[2284146/attachments/1099008|pdf]])
** 6.5 The Abel theorem on the solvability in radicals of the general quinti equation ([[2284146/attachments/1099008|pdf]])
 
 
* [http://www.springerlink.com/content/0620513v46601g12/ Variations on the theme of solvability by radicals]<br>
 
* [http://www.springerlink.com/content/0620513v46601g12/ Variations on the theme of solvability by radicals]<br>
** A. G. Khovanskii
+
** A. G. Khovanskii, Proceedings of the Steklov Institute of Mathematics,     Volume 259, Number 2 / 2007년 12월
** Proceedings of the Steklov Institute of Mathematics,     Volume 259, Number 2 / 2007년 12월
 
 
* [http://www.turpion.org/php/paper.phtml?journal_id=rm&paper_id=759 On solvability and unsolvability of equations in explicit form]<br>
 
* [http://www.turpion.org/php/paper.phtml?journal_id=rm&paper_id=759 On solvability and unsolvability of equations in explicit form]<br>
** A G Khovanskii
+
** A G Khovanskii, Russian Math. Surveys 2004, 59 (4), 661-736
** Russian Math. Surveys 2004, 59 (4), 661-736
+
* [http://www.jstor.org/stable/2974763 Niels Hendrik Abel and Equations of the Fifth Degree]<br>
 +
** Michael I. Rosen, <cite style="line-height: 2em;">The American Mathematical Monthly</cite>, Vol. 102, No. 6 (Jun. - Jul., 1995), pp. 495-505
 +
*

2010년 1월 31일 (일) 17:13 판

간단한 소개
  •  

 

Monodromy proof

Consider \(3w^5-25w^3+60w-z=0\).

For \(z=\pm 38\) and \(z=\pm 16\), the above equation has four distinct roots.

These are the branch points and determines the Riemann surfaces.

Then the monodromy group is acting as a permutation of sheets and not solvable.

(This is a little different from the Galois group.)

We can apply this monodromy idea to the computation of Galois groups of number fields.

 

 

regular proof

\(f(x)=2x^5-5x^4+5\) is the irreducible polynomial of degree 5 over the rationals.

It has two complex and 3 real roots.

This implies the Galois group is \(S_5\).

 

 

 

Sketch of the original proof

We start from the field of symmetric functions.

Essentially, we are studying the radical extension of that base field.

The proof is consisted of two steps.

1. radicals to express the quintic formula can be expressed in terms of roots

2. the behavior of radicals under permutations

\(K=\mathbb{C}(x_1,\cdots,x_n)\)

\(F=\mathbb{C}(s_1,\cdots,s_n)\)

 

 

step 1

 

관련된 학부 과목과 미리 알고 있으면 좋은 것들

 

관련된 대학원 과목

 

 

관련된 다른 주제들

 

 

링크

 

 

참고할만한 자료