"순환군과 유한아벨군의 표현론"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
68번째 줄: 68번째 줄:
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
* http://viswiki.com/en/
 
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
 
* http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
 
* 다음백과사전 http://enc.daum.net/dic100/search.do?q=
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]
 
  
 
 
 
 
  
<h5>관련기사</h5>
+
 
 +
 
 +
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">수학용어번역</h5>
  
* 네이버 뉴스 검색 (키워드 수정)<br>
+
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
+
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=character
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
+
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid={D6048897-56F9-43D7-8BB6-50B362D1243A}&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
  
 
 
 
 
96번째 줄: 90번째 줄:
 
 
 
 
  
<h5>이미지 검색</h5>
+
<h5>'''<br>'''</h5>
 
 
* http://commons.wikimedia.org/w/index.php?title=Special%3ASearch&search=
 
* http://images.google.com/images?q=
 
* [http://www.artchive.com/ http://www.artchive.com]
 
 
 
 
 
 
 
<h5>동영상</h5>
 
 
 
* http://www.youtube.com/results?search_type=&search_query=
 

2009년 8월 25일 (화) 16:09 판

간단한 소개
  • 유한 순환군의 표현론은 매우 간단함.
  • \(\mathbb{Z}/n\mathbb{Z}\) 의 기약표현은 모두 1차원으로 주어짐.
  • \(\zeta=e^{{2\pi i} \over n}\) 라 두자.
  • \(\chi \colon \mathbb Z/n\mathbb Z \to \mathbb C^{*}\) 는 \(\chi(1)\) 에 의해서 결정됨.
  • 한편, \(\chi(g)^n=\chi(g^n)=1\) 을 만족시켜야 하므로, \(\chi(1)=\zeta^r, r=0,1,\cdots,n-1\) 만이 가능하다.
  • 이렇게 주어진 n개의 기약표현이 크기가 n인 순환군의 모든 기약표현이 된다.

 

 

하위주제들

 

 

 

하위페이지

 

 

재미있는 사실

 

 

관련된 단원

 

 

관련된 고교수학 또는 대학수학

 

관련된 다른 주제들
  •  

 

관련도서 및 추천도서

 

참고할만한 자료

 

 

수학용어번역

 

 

블로그