"숫자 12와 24"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
1번째 줄: | 1번째 줄: | ||
+ | <h5>간단한 소개</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>관련된 학부 과목과 미리 알고 있으면 좋은 것들</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>관련된 대학원 과목</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>관련된 다른 주제들</h5> | ||
+ | |||
+ | * [[라마누잔(1887- 1920)|라마누잔의 수학]] | ||
+ | |||
+ | |||
+ | |||
+ | <h5>표준적인 도서 및 추천도서</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>위키링크</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>참고할만한 자료</h5> | ||
+ | |||
* [http://www.jstor.org/stable/2589316 Lattice Polygons and the Number 12]<br> | * [http://www.jstor.org/stable/2589316 Lattice Polygons and the Number 12]<br> | ||
** Bjorn Poonen and Fernando Rodriguez-Villegas | ** Bjorn Poonen and Fernando Rodriguez-Villegas | ||
** <cite>The American Mathematical Monthly</cite>, Vol. 107, No. 3 (Mar., 2000), pp. 238-250 | ** <cite>The American Mathematical Monthly</cite>, Vol. 107, No. 3 (Mar., 2000), pp. 238-250 | ||
− | |||
− | |||
* [http://math.ucr.edu/home/baez/numbers/ My Favorite Numbers] : [http://math.ucr.edu/home/baez/numbers/#5 5], [http://math.ucr.edu/home/baez/numbers/#8 8], and [http://math.ucr.edu/home/baez/numbers/#24 24]<br> | * [http://math.ucr.edu/home/baez/numbers/ My Favorite Numbers] : [http://math.ucr.edu/home/baez/numbers/#5 5], [http://math.ucr.edu/home/baez/numbers/#8 8], and [http://math.ucr.edu/home/baez/numbers/#24 24]<br> | ||
** John Baez | ** John Baez | ||
** [http://www.maths.gla.ac.uk/%7Etl/rankin/ The Rankin Lectures], University of Glasgow, September 15-19, 2008 | ** [http://www.maths.gla.ac.uk/%7Etl/rankin/ The Rankin Lectures], University of Glasgow, September 15-19, 2008 | ||
− | * [http://www.ingentaconnect.com/content/klu/matn/2005/00000077/00000001/00000010 A short proof of the twelve-point theorem] | + | * [http://www.ingentaconnect.com/content/klu/matn/2005/00000077/00000001/00000010 A short proof of the twelve-point theorem]<br> |
+ | ** Repovscaron D.; Skopenkov M.; Cencelj M. | ||
+ | ** Mathematical Notes, Volume 77, Number 1, January 2005 , pp. 108-111(4) | ||
* [http://www.jstor.org/stable/2323911 The Square Pyramid Puzzle]<br> | * [http://www.jstor.org/stable/2323911 The Square Pyramid Puzzle]<br> | ||
** W. S. Anglin | ** W. S. Anglin | ||
** <cite>The American Mathematical Monthly</cite>, Vol. 97, No. 2 (Feb., 1990), pp. 120-124 | ** <cite>The American Mathematical Monthly</cite>, Vol. 97, No. 2 (Feb., 1990), pp. 120-124 |
2008년 11월 2일 (일) 10:18 판
간단한 소개
관련된 학부 과목과 미리 알고 있으면 좋은 것들
관련된 대학원 과목
관련된 다른 주제들
표준적인 도서 및 추천도서
위키링크
참고할만한 자료
- Lattice Polygons and the Number 12
- Bjorn Poonen and Fernando Rodriguez-Villegas
- The American Mathematical Monthly, Vol. 107, No. 3 (Mar., 2000), pp. 238-250
- My Favorite Numbers : 5, 8, and 24
- John Baez
- The Rankin Lectures, University of Glasgow, September 15-19, 2008
- A short proof of the twelve-point theorem
- Repovscaron D.; Skopenkov M.; Cencelj M.
- Mathematical Notes, Volume 77, Number 1, January 2005 , pp. 108-111(4)
- The Square Pyramid Puzzle
- W. S. Anglin
- The American Mathematical Monthly, Vol. 97, No. 2 (Feb., 1990), pp. 120-124