"숫자 163"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
21번째 줄: 21번째 줄:
  
 
<h5>j-invariant</h5>
 
<h5>j-invariant</h5>
 +
 +
<math>j(\tau)= {E_4(\tau)^3\over \Delta(\tau)}= q^{-1}+744+196884q+21493760q^2+\cdots</math>
 +
 +
<math>j(\tau)=1728\frac{g_2^3}{g_2^3-27g_3^2}</math>
 +
 +
 
 +
 +
<math> E_4(\tau)=1+240\sum_{n>0}\sigma_3(n)q^n= 1+240q+2160q^2+\cdots</math>
 +
 +
<math>(\sigma_3(n)=\sum_{d|n}d^3)</math>
 +
 +
<math>\Delta(\tau)= q\prod_{n>0}(1-q^n)^{24}= q-24q+252q^2+\cdots</math>
  
 
<math>j(\tau) = \frac{1}{{q}} + 744 + 196884{q} + 21493760{q}^2 + 864299970{q}^3 + \cdots</math><br> 이 때, <math>{q} = e^{2\pi i\tau}</math>
 
<math>j(\tau) = \frac{1}{{q}} + 744 + 196884{q} + 21493760{q}^2 + 864299970{q}^3 + \cdots</math><br> 이 때, <math>{q} = e^{2\pi i\tau}</math>
40번째 줄: 52번째 줄:
 
 
 
 
  
<br>
+
 
  
 
 
 
 
66번째 줄: 78번째 줄:
  
 
* Ramanujan observed that <math>\large e^{\pi \sqrt{163}}=262537412640768743.99999999999925\cdots</math> is within <math>10^{-12}</math> of an integer and used this to obtain approximations to <math>\pi</math>. In his Field’s Medal lecture, Richard Borcherds said that every mathematician should see once in his/her life why this should be the case, and this essay is an attempt to do just that.
 
* Ramanujan observed that <math>\large e^{\pi \sqrt{163}}=262537412640768743.99999999999925\cdots</math> is within <math>10^{-12}</math> of an integer and used this to obtain approximations to <math>\pi</math>. In his Field’s Medal lecture, Richard Borcherds said that every mathematician should see once in his/her life why this should be the case, and this essay is an attempt to do just that.
*  
+
* <math>640320^3= 262537412640768744</math>
 +
 
 +
 
  
 
<h5>관련된 단원</h5>
 
<h5>관련된 단원</h5>

2009년 10월 24일 (토) 00:48 판

간단한 소개
  • \(\large e^{\pi \sqrt{163}}=262537412640768743.9999999999992500725\cdots\approx 262537412640768744\)
  • \(e^{\pi \sqrt{43}} = 884736743.9997774660349066619374620785\approx 884736744\)
  • \(e^{\pi \sqrt{67}} = 147197952743.9999986624542245068292613\approx 147197952744\)

 

셋 모두 끝 세 자리가 744

 

complex multiplication

 

 

j-invariant

\(j(\tau)= {E_4(\tau)^3\over \Delta(\tau)}= q^{-1}+744+196884q+21493760q^2+\cdots\)

\(j(\tau)=1728\frac{g_2^3}{g_2^3-27g_3^2}\)

 

\( E_4(\tau)=1+240\sum_{n>0}\sigma_3(n)q^n= 1+240q+2160q^2+\cdots\)

\((\sigma_3(n)=\sum_{d|n}d^3)\)

\(\Delta(\tau)= q\prod_{n>0}(1-q^n)^{24}= q-24q+252q^2+\cdots\)

\(j(\tau) = \frac{1}[[:틀:Q]] + 744 + 196884{q} + 21493760{q}^2 + 864299970{q}^3 + \cdots\)
이 때, \({q} = e^{2\pi i\tau}\)

\( j(\tau)= {E_4(\tau)^3\over \Delta(\tau)}= q^{-1}+744+196884q+21493760q^2+\cdots\)

 

\( E_4(\tau)=1+240\sum_{n>0}\sigma_3(n)q^n= 1+240q+2160q^2+\cdots\)

 

\((\sigma_3(n)=\sum_{d|n}d^3)\)

\(\Delta(\tau)= q\prod_{n>0}(1-q^n)^{24}= q-24q+252q^2+\cdots\)

 

 

 

 

 

하위주제들

 

 

 

하위페이지

 

 

재미있는 사실
  • Ramanujan observed that \(\large e^{\pi \sqrt{163}}=262537412640768743.99999999999925\cdots\) is within \(10^{-12}\) of an integer and used this to obtain approximations to \(\pi\). In his Field’s Medal lecture, Richard Borcherds said that every mathematician should see once in his/her life why this should be the case, and this essay is an attempt to do just that.
  • \(640320^3= 262537412640768744\)

 

관련된 단원

 

 

많이 나오는 질문

 

관련된 고교수학 또는 대학수학

 

 

관련된 다른 주제들

 

관련도서 및 추천도서

 

참고할만한 자료

 

 

관련기사

네이버 뉴스 검색 (키워드 수정)

 

 

블로그

 

이미지 검색

 

동영상