"슈바르츠-크리스토펠 사상(Schwarz-Christoffel mappings)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
이 항목의 스프링노트 원문주소==
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로) |
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로) |
||
1번째 줄: | 1번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소 | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소== |
* [[슈바르츠-크리스토펠 사상(Schwarz-Christoffel mappings)]] | * [[슈바르츠-크리스토펠 사상(Schwarz-Christoffel mappings)]] | ||
7번째 줄: | 7번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요 | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요== |
* 복소상반평면을 다각형의 내부로 보내는 등각사상 | * 복소상반평면을 다각형의 내부로 보내는 등각사상 | ||
18번째 줄: | 18번째 줄: | ||
− | ==미분방정식 | + | ==미분방정식== |
* 슈바르츠-크리스토펠 사상이 만족해야 하는 미분방정식<br><math>\frac{f''(z)}{f'(z)}=\sum_{k=1}^{n}\frac{-\mu_k}{z-a_k}</math><br> | * 슈바르츠-크리스토펠 사상이 만족해야 하는 미분방정식<br><math>\frac{f''(z)}{f'(z)}=\sum_{k=1}^{n}\frac{-\mu_k}{z-a_k}</math><br> | ||
28번째 줄: | 28번째 줄: | ||
− | ==국소적인 이해 | + | ==국소적인 이해== |
* 우선 <math>z^{\alpha}</math> 형태의 복소함수에 대해서 이해할 필요가 있음 | * 우선 <math>z^{\alpha}</math> 형태의 복소함수에 대해서 이해할 필요가 있음 | ||
42번째 줄: | 42번째 줄: | ||
− | ==상반평면을 삼각형으로 보내는 예 | + | ==상반평면을 삼각형으로 보내는 예== |
* 다음 슈바르츠-크리스토펠 사상은 상반평면을, 세 내각이 <math>\pi/4,\pi/4,\pi/2</math> 인 직각이등변 삼각형으로 보낸다<br><math>f(z)=\int_0^z \left(\zeta-1\right)^{-3/4}\left(\zeta+1\right)^{-3/4}\, d\zeta</math><br> | * 다음 슈바르츠-크리스토펠 사상은 상반평면을, 세 내각이 <math>\pi/4,\pi/4,\pi/2</math> 인 직각이등변 삼각형으로 보낸다<br><math>f(z)=\int_0^z \left(\zeta-1\right)^{-3/4}\left(\zeta+1\right)^{-3/4}\, d\zeta</math><br> | ||
52번째 줄: | 52번째 줄: | ||
− | ==등각사상으로서의 타원적분 | + | ==등각사상으로서의 타원적분== |
* 다음과 같은 형태로 주어지는 [[타원적분(통합됨)|타원적분]] 을 생각하자<br><math>f(z)=\int_0^z\frac{d\zeta}{\sqrt{(\zeta+1)\zeta(\zeta-1)}}</math><br> | * 다음과 같은 형태로 주어지는 [[타원적분(통합됨)|타원적분]] 을 생각하자<br><math>f(z)=\int_0^z\frac{d\zeta}{\sqrt{(\zeta+1)\zeta(\zeta-1)}}</math><br> | ||
67번째 줄: | 67번째 줄: | ||
− | ==단위원에 대한 슈바르츠-크리스토펠 사상 | + | ==단위원에 대한 슈바르츠-크리스토펠 사상== |
* 복소해석학의 [[리만 사상 정리 Riemann mapping theorem and the uniformization theorem|리만 사상 정리 Riemann mapping theorem]] 에 의하면, 아래 그림과 같은 단위원과 별모양(pentagram) 사이에는 전단사 복소해석함수가 존재. | * 복소해석학의 [[리만 사상 정리 Riemann mapping theorem and the uniformization theorem|리만 사상 정리 Riemann mapping theorem]] 에 의하면, 아래 그림과 같은 단위원과 별모양(pentagram) 사이에는 전단사 복소해석함수가 존재. | ||
83번째 줄: | 83번째 줄: | ||
− | ==메모 | + | ==메모== |
* http://siam.org/pdf/news/1297.pdf | * http://siam.org/pdf/news/1297.pdf | ||
93번째 줄: | 93번째 줄: | ||
− | ==관련된 항목들[[초기하 미분방정식(Hypergeometric differential equations)|초기하 미분방정식]] | + | ==관련된 항목들[[초기하 미분방정식(Hypergeometric differential equations)|초기하 미분방정식]]== |
* [[헤르만 슈바르츠 (1843-1921)]] | * [[헤르만 슈바르츠 (1843-1921)]] | ||
102번째 줄: | 102번째 줄: | ||
− | ==매스매티카 파일 및 계산 리소스 | + | ==매스매티카 파일 및 계산 리소스== |
* | * | ||
117번째 줄: | 117번째 줄: | ||
− | ==사전 형태의 자료 | + | ==사전 형태의 자료== |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
133번째 줄: | 133번째 줄: | ||
− | ==관련도서 | + | ==관련도서== |
* [http://www.amazon.com/Conformal-Mapping-Zeev-Nehari/dp/048661137X Conformal Mapping]<br> | * [http://www.amazon.com/Conformal-Mapping-Zeev-Nehari/dp/048661137X Conformal Mapping]<br> | ||
** Zeev Nehari, Dover Publications, 1982-1 | ** Zeev Nehari, Dover Publications, 1982-1 | ||
** [[1950524/attachments/2057891|Schwarz_functions_and_hypergeometric_differential_equation.pdf]] | ** [[1950524/attachments/2057891|Schwarz_functions_and_hypergeometric_differential_equation.pdf]] |
2012년 11월 1일 (목) 12:53 판
이 항목의 스프링노트 원문주소==
개요==
- 복소상반평면을 다각형의 내부로 보내는 등각사상
- 다음 조건을 가정
- 실수축 위에 있는 \(\{a_k \in\mathbb{R}| k=1,\cdots, n\}\)가 n각형의 꼭지점으로 보내지고
- n각형의 내각이 \(\{\alpha_k \pi| k=1,\cdots, n\}\)이고 외각이 \(\{\lambda_k \pi| k=1,\cdots, n\}\) 인 경우 (즉 \(\alpha_k+\mu_k=1\), \(\sum_{k=1}^n \mu_k=2\))
- 위의 같은 조건하에서, 슈바르츠-크리스토펠 사상은 다음의 형태로 주어짐
\(f(z)=\alpha +\beta \underset{0}{\overset{z}{\int }}\prod _{k=1}^n \left(\zeta -a_k\right){}^{\alpha_k-1}d\zeta=\alpha +\beta \underset{0}{\overset{z}{\int }}\prod _{k=1}^n \frac{1}{\left(\zeta -a_k\right){}^{\mu_k}}d\zeta\)
- \(a_n=\infty\) 인 경우, 슈바르츠-크리스토펠 사상은 다음의 형태로 주어짐
\(f(z)=\alpha +\beta \underset{0}{\overset{z}{\int }}\prod _{k=1}^{n-1} \left(\zeta -a_k\right){}^{\alpha_k-1}d\zeta=\alpha +\beta \underset{0}{\overset{z}{\int }}\prod _{k=1}^{n-1} \frac{1}{\left(\zeta -a_k\right){}^{\mu_k}}d\zeta\)
미분방정식
- 슈바르츠-크리스토펠 사상이 만족해야 하는 미분방정식
\(\frac{f''(z)}{f'(z)}=\sum_{k=1}^{n}\frac{-\mu_k}{z-a_k}\)
- \({f''(z)}/{f'(z)}\) 는 연산자로서 \(f\mapsto \alpha f+\beta\) 에 의해 불변이다
- 슈바르츠 미분(Schwarzian derivative) 과의 유사성
국소적인 이해
- 우선 \(z^{\alpha}\) 형태의 복소함수에 대해서 이해할 필요가 있음
- \(\alpha > 0\) 인 경우에 대해서 생각해보자
\(z^{\alpha}=e^{\alpha \ln z}= e^{\alpha (\ln |z|+i\arg z)}} =\exp(\ln |z|^{\alpha}+\alpha i \arg z)\)
- 이 함수가 복소상반평면을 어떻게 변화시키는지 알아보기 위해 \(\arg z\)의 브랜치를 하나 고정하자
- \(z\) 가 실수라고 하자.
- \(z>0\) 이면 \(\arg z =0\)
- \(z<0\) 이면 \(\arg z =\pi\)
- 상반평면이 \(z^{\alpha}\) 에 의해 각도가 \(\alpha \pi\)인 두 직선으로 쌓인 영역으로 변화하며, \(z<0\) 의 이미지에서 \(z>0\) 의 이미지로 갈 때, 시계방향으로 \((1-\alpha) \pi\) 만큼 회전하게 된다
상반평면을 삼각형으로 보내는 예
- 다음 슈바르츠-크리스토펠 사상은 상반평면을, 세 내각이 \(\pi/4,\pi/4,\pi/2\) 인 직각이등변 삼각형으로 보낸다
\(f(z)=\int_0^z \left(\zeta-1\right)^{-3/4}\left(\zeta+1\right)^{-3/4}\, d\zeta\)
등각사상으로서의 타원적분
- 다음과 같은 형태로 주어지는 타원적분 을 생각하자
\(f(z)=\int_0^z\frac{d\zeta}{\sqrt{(\zeta+1)\zeta(\zeta-1)}}\)
- 이러한 타원적분으로 주어진 함수가 등각사상으로서 어떤 성질을 갖는지 알기 위해 국소적으로 보자면,
- \(z=-1\) 근방에서 \(f(z)-f(-1) \approx (z+1)^{\frac{1}{2}}\)
- \(z=0\) 근방에서 \(f(z)-f(0) \approx z^{\frac{1}{2}}\)
- \(z=1\) 근방에서 \(f(z)-f(1) \approx (z-1)^{\frac{1}{2}}\)
- \(z=\infty\) 근방, 즉 \(w=1/z \approx 0\) 일 때 \(f(1/w)-f(\infty) \approx w^{\frac{1}{2}}\)
- 슈바르츠-크리스토펠 사상의 관점에서 보면, 타원적분은 복소상반평면을 직각사각형으로 보낸다
- 따라서 역함수의 해석적 확장을 생각하면 이중주기의 타원함수 가 얻어지게 된다
단위원에 대한 슈바르츠-크리스토펠 사상
- 복소해석학의 리만 사상 정리 Riemann mapping theorem 에 의하면, 아래 그림과 같은 단위원과 별모양(pentagram) 사이에는 전단사 복소해석함수가 존재.
- 단위원에 대한 슈바르츠-크리스토펠 사상 (Schwarz-Christoffel mappings)은 이러한 사상을 다음과 같이 구체적으로 표현할 수 있게 해주는 공식.
\(f(z)=\int_0^z\frac{(1-\zeta^5)^{\frac{2}{5}}}{(1+\zeta^5)^{\frac{4}{5}}}\,d\zeta\)
메모
관련된 항목들초기하 미분방정식
매스매티카 파일 및 계산 리소스
-
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Schwarz–Christoffel_mapping
- Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
관련도서
- Conformal Mapping
- Zeev Nehari, Dover Publications, 1982-1
- Schwarz_functions_and_hypergeometric_differential_equation.pdf
- 복소상반평면을 다각형의 내부로 보내는 등각사상
- 다음 조건을 가정
- 실수축 위에 있는 \(\{a_k \in\mathbb{R}| k=1,\cdots, n\}\)가 n각형의 꼭지점으로 보내지고
- n각형의 내각이 \(\{\alpha_k \pi| k=1,\cdots, n\}\)이고 외각이 \(\{\lambda_k \pi| k=1,\cdots, n\}\) 인 경우 (즉 \(\alpha_k+\mu_k=1\), \(\sum_{k=1}^n \mu_k=2\))
- 위의 같은 조건하에서, 슈바르츠-크리스토펠 사상은 다음의 형태로 주어짐
\(f(z)=\alpha +\beta \underset{0}{\overset{z}{\int }}\prod _{k=1}^n \left(\zeta -a_k\right){}^{\alpha_k-1}d\zeta=\alpha +\beta \underset{0}{\overset{z}{\int }}\prod _{k=1}^n \frac{1}{\left(\zeta -a_k\right){}^{\mu_k}}d\zeta\) - \(a_n=\infty\) 인 경우, 슈바르츠-크리스토펠 사상은 다음의 형태로 주어짐
\(f(z)=\alpha +\beta \underset{0}{\overset{z}{\int }}\prod _{k=1}^{n-1} \left(\zeta -a_k\right){}^{\alpha_k-1}d\zeta=\alpha +\beta \underset{0}{\overset{z}{\int }}\prod _{k=1}^{n-1} \frac{1}{\left(\zeta -a_k\right){}^{\mu_k}}d\zeta\)
\(\frac{f''(z)}{f'(z)}=\sum_{k=1}^{n}\frac{-\mu_k}{z-a_k}\)
\(z^{\alpha}=e^{\alpha \ln z}= e^{\alpha (\ln |z|+i\arg z)}} =\exp(\ln |z|^{\alpha}+\alpha i \arg z)\)
- \(z>0\) 이면 \(\arg z =0\)
- \(z<0\) 이면 \(\arg z =\pi\)
\(f(z)=\int_0^z \left(\zeta-1\right)^{-3/4}\left(\zeta+1\right)^{-3/4}\, d\zeta\)
\(f(z)=\int_0^z\frac{d\zeta}{\sqrt{(\zeta+1)\zeta(\zeta-1)}}\)
- \(z=-1\) 근방에서 \(f(z)-f(-1) \approx (z+1)^{\frac{1}{2}}\)
- \(z=0\) 근방에서 \(f(z)-f(0) \approx z^{\frac{1}{2}}\)
- \(z=1\) 근방에서 \(f(z)-f(1) \approx (z-1)^{\frac{1}{2}}\)
- \(z=\infty\) 근방, 즉 \(w=1/z \approx 0\) 일 때 \(f(1/w)-f(\infty) \approx w^{\frac{1}{2}}\)
- Zeev Nehari, Dover Publications, 1982-1
- Schwarz_functions_and_hypergeometric_differential_equation.pdf