"스털링 수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
잔글 (찾아 바꾸기 – “<h5 (.*)">” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소==
+
==이 항목의 스프링노트 원문주소==
  
 
* [[스털링 수]]
 
* [[스털링 수]]
7번째 줄: 7번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요==
+
==개요==
  
 
<math>s(n,k)</math> 제1종 스털링 수
 
<math>s(n,k)</math> 제1종 스털링 수
62번째 줄: 62번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">벨 수열 (Bell number)과의 관계==
+
==벨 수열 (Bell number)과의 관계==
  
 
http://en.wikipedia.org/wiki/Bell_number
 
http://en.wikipedia.org/wiki/Bell_number
114번째 줄: 114번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역==
+
==수학용어번역==
  
 
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
 
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=

2012년 11월 1일 (목) 13:25 판

이 항목의 스프링노트 원문주소

 

 

개요

\(s(n,k)\) 제1종 스털링 수

 

\((x)_{k}=\sum_{j}s(k,j)x^{j}\)

 

\(S(n,k)\) 제2종 스털링 수

\(x^{k}=\sum_{j}S(k,j)(x)_j\)

 

 

제1종 스털링 수

  • 정의
    \((x)_{k}=\sum_{j}s(k,j)x^{j}\)

\((x)_3=x(x-1)(x-2)=2x-3x^2+x^3\)

s(3,0)=0, s(3,1)=2,s(3,2)=-3,s(3,3)=1

 

 

제2종 스털링 수

  • n개 원소를 갖는 집합을 k개의 블록으로 분할하는 방법의 수 \(S(n,k)\)
  • 제2종 스털링 수

 

\(x^{n}=\sum_{j}S(n,j)(x)_j\)

예)

\(x^3 = (x)_1+3(x)_2+(x)_3=x+3x(x-1)+x(x-1)(x-2)\)

생성함수

\(\sum_{k}S(k,n)x^k=\frac{x^n}{(1-x)(1-2x)\cdots(1-nx)}\)

지수생성함수

\(\sum_{k}\frac{S(k,n)}{k!}x^k=\frac{(e^x-1)^{n}}{n!}\)

 

 

벨 수열 (Bell number)과의 관계

http://en.wikipedia.org/wiki/Bell_number

\(B(n)=\sum_{k}S(n,k)\)

\{1,2,\cdots,n\} 의 분할의 개수

\(\sum_{n=0}^\infty \frac{B_n}{n!} x^n = e^{e^x-1}.\)

 

 

재미있는 사실

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서

 

 

관련기사

 

 

링크