"슬레이터 목록 (Slater's list)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로) |
|||
5번째 줄: | 5번째 줄: | ||
− | + | ==개요</h5> | |
11번째 줄: | 11번째 줄: | ||
− | + | ==주요 항등식</h5> | |
* '''[Slater51] '''(1.3) | * '''[Slater51] '''(1.3) | ||
23번째 줄: | 23번째 줄: | ||
− | + | ==Group B</h5> | |
* '''[Slater51] '''(4.1)<br><math>\sum_{r=0}^{n}\frac{(1-aq^{2r})(-1)^{r}q^{\frac{1}{2}(r^2+r)}(a)_{r}(c)_{r}(d)_{r}a^{r}}{(a)_{n+r+1}(q)_{n-r}(q)_{r}(aq/c)_{r}(aq/d)_{r}c^{r}d^{r}}=\frac{(aq/cd)_{n}}{(q)_{n}(aq/c)_{n}(aq/d)_{n}}</math><br> | * '''[Slater51] '''(4.1)<br><math>\sum_{r=0}^{n}\frac{(1-aq^{2r})(-1)^{r}q^{\frac{1}{2}(r^2+r)}(a)_{r}(c)_{r}(d)_{r}a^{r}}{(a)_{n+r+1}(q)_{n-r}(q)_{r}(aq/c)_{r}(aq/d)_{r}c^{r}d^{r}}=\frac{(aq/cd)_{n}}{(q)_{n}(aq/c)_{n}(aq/d)_{n}}</math><br> | ||
37번째 줄: | 37번째 줄: | ||
− | + | ==Group E</h5> | |
* E(3) [[슬레이터 2]] | * E(3) [[슬레이터 2]] | ||
56번째 줄: | 56번째 줄: | ||
− | + | ==슬레이터 목록</h5> | |
* [[슬레이터 1]]<br><math>\prod_{n=1}^{\infty}(1-q^n)=1+\sum_{n=1}^{\infty}(-1)^{n}(q^{\frac{3 n^2-n}{2}}+q^{\frac{3 n^2+n}{2}})=\sum_{n=-\infty}^\infty(-1)^nq^{n(3n-1)/2}</math><br> | * [[슬레이터 1]]<br><math>\prod_{n=1}^{\infty}(1-q^n)=1+\sum_{n=1}^{\infty}(-1)^{n}(q^{\frac{3 n^2-n}{2}}+q^{\frac{3 n^2+n}{2}})=\sum_{n=-\infty}^\infty(-1)^nq^{n(3n-1)/2}</math><br> | ||
66번째 줄: | 66번째 줄: | ||
− | + | ==역사</h5> | |
77번째 줄: | 77번째 줄: | ||
− | + | ==메모</h5> | |
87번째 줄: | 87번째 줄: | ||
− | + | ==관련된 항목들</h5> | |
* [[자코비 삼중곱(Jacobi triple product)]] | * [[자코비 삼중곱(Jacobi triple product)]] | ||
113번째 줄: | 113번째 줄: | ||
− | + | ==사전 형태의 자료</h5> | |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
125번째 줄: | 125번째 줄: | ||
− | + | ==리뷰논문, 에세이, 강의노트</h5> | |
133번째 줄: | 133번째 줄: | ||
− | + | ==관련논문</h5> | |
* '''[Slater52]'''Slater, L. J.[http://dx.doi.org/10.1112%2Fplms%2Fs2-54.2.147 Further identities of the Rogers-Ramanujan type]<br>Proc. London Math. Soc.<br>1952s2-54: 147–167<br> | * '''[Slater52]'''Slater, L. J.[http://dx.doi.org/10.1112%2Fplms%2Fs2-54.2.147 Further identities of the Rogers-Ramanujan type]<br>Proc. London Math. Soc.<br>1952s2-54: 147–167<br> | ||
146번째 줄: | 146번째 줄: | ||
− | + | ==관련도서</h5> | |
* 도서내검색<br> | * 도서내검색<br> | ||
** http://books.google.com/books?q= | ** http://books.google.com/books?q= | ||
** http://book.daum.net/search/contentSearch.do?query= | ** http://book.daum.net/search/contentSearch.do?query= |
2012년 10월 31일 (수) 23:25 판
이 항목의 수학노트 원문주소
==개요
==주요 항등식
- [Slater51] (1.3)
- [Slater51] (2.1)
- [Slater51] (4.1)
\(\sum_{r=0}^{n}\frac{(1-aq^{2r})(-1)^{r}q^{\frac{1}{2}(r^2+r)}(a)_{r}(c)_{r}(d)_{r}a^{r}}{(a)_{n+r+1}(q)_{n-r}(q)_{r}(aq/c)_{r}(aq/d)_{r}c^{r}d^{r}}=\frac{(aq/cd)_{n}}{(q)_{n}(aq/c)_{n}(aq/d)_{n}}\) - [Slater51] (4.2)
\(\sum_{r=-[n/2]}^{r=[n/2]}\frac{(1-aq^{4r})(q^{-n})_{2r}a^{2r}q^{2nr+r}(d)_{q^2,r}(e)_{q^2,r}}{(1-a)(aq^{n+1})_{2r}d^re^r(aq^2/d)_{q^2,r}(aq^2/e)_{q^2,r}}=\frac{(q^2/a,aq/d,aq/e,aq^2/de;q^2)_{\infty}}{(q,q^2/d,q^2/e,a^2q/de;q^2)_{\infty}}\frac{(q)_{n}(aq)_{n}(a^2/de)_{q^2,n}}{(aq)_{q^2,n}(aq/d)_{n}(aq/e)_{n}}\) - [Slater51] (4.3)
==Group B
- [Slater51] (4.1)
\(\sum_{r=0}^{n}\frac{(1-aq^{2r})(-1)^{r}q^{\frac{1}{2}(r^2+r)}(a)_{r}(c)_{r}(d)_{r}a^{r}}{(a)_{n+r+1}(q)_{n-r}(q)_{r}(aq/c)_{r}(aq/d)_{r}c^{r}d^{r}}=\frac{(aq/cd)_{n}}{(q)_{n}(aq/c)_{n}(aq/d)_{n}}\) - B(1)
- B(2)
==Group E
Group H
- [Slater51] (4.1)
\(\sum_{r=0}^{n}\frac{(1-aq^{2r})(-1)^{r}q^{\frac{1}{2}(r^2+r)}(a)_{r}(c)_{r}(d)_{r}a^{r}}{(a)_{n+r+1}(q)_{n-r}(q)_{r}(aq/c)_{r}(aq/d)_{r}c^{r}d^{r}}=\frac{(aq/cd)_{n}}{(q)_{n}(aq/c)_{n}(aq/d)_{n}}\)
==슬레이터 목록
- 슬레이터 1
\(\prod_{n=1}^{\infty}(1-q^n)=1+\sum_{n=1}^{\infty}(-1)^{n}(q^{\frac{3 n^2-n}{2}}+q^{\frac{3 n^2+n}{2}})=\sum_{n=-\infty}^\infty(-1)^nq^{n(3n-1)/2}\) - 슬레이터 2
\(\prod_{n=1}^{\infty}(1+q^n)=\sum_{n=1}^{\infty}\frac{q^{n(n+1)/2}}{(q)_n}\) - 슬레이터 8
\(\sum_{n=0}^{\infty}\frac{(q^2;q^2)_{n}q^{n(n+1)/2}}{ (q)_{n}^2}=\frac{(-q)_{\infty}}{(q^2;q^4)_{\infty}}\)
==역사
==메모
- Math Overflow http://mathoverflow.net/search?q=
==관련된 항목들
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
==사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
==리뷰논문, 에세이, 강의노트
==관련논문
- [Slater52]Slater, L. J.Further identities of the Rogers-Ramanujan type
Proc. London Math. Soc.
1952s2-54: 147–167 - [Slater51]Slater, L. J. A New Proof of Rogers's Transformations of Infinite SeriesProc. London Math. Soc. 1951 s2-53: 460-475
==관련도서