"양의 정부호 행렬(positive definite matrix)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
10번째 줄: | 10번째 줄: | ||
* 실계수 n×n 행렬 M이 모든 0이 아닌 벡터 v 에 대하여, <math> z^{T}M z > 0 </math> 를 만족시킬 때, 양의 정부호 행렬이라 한다 | * 실계수 n×n 행렬 M이 모든 0이 아닌 벡터 v 에 대하여, <math> z^{T}M z > 0 </math> 를 만족시킬 때, 양의 정부호 행렬이라 한다 | ||
− | * 실베스터 판정법 - principal minor 주 소행렬식이 모두 양수임을 보이면 된다 | + | * 실베스터 판정법 - leading principal minor 주 소행렬식이 모두 양수임을 보이면 된다 |
20번째 줄: | 20번째 줄: | ||
* 행렬<br><math>\left( \begin{array}{cc} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{array} \right)</math><br> | * 행렬<br><math>\left( \begin{array}{cc} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{array} \right)</math><br> | ||
* principal submatrix<br><math>\left( \begin{array}{c} a_{1,1} \end{array} \right)</math>, <math>\left( \begin{array}{c} a_{2,2} \end{array} \right)</math>, <math>\left( \begin{array}{cc} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{array} \right)</math><br> | * principal submatrix<br><math>\left( \begin{array}{c} a_{1,1} \end{array} \right)</math>, <math>\left( \begin{array}{c} a_{2,2} \end{array} \right)</math>, <math>\left( \begin{array}{cc} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{array} \right)</math><br> | ||
− | |||
− | |||
31번째 줄: | 29번째 줄: | ||
* 행렬<br><math>\left( \begin{array}{ccc} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{array} \right)</math><br> | * 행렬<br><math>\left( \begin{array}{ccc} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{array} \right)</math><br> | ||
* principal submatrix<br><math>\left( \begin{array}{c} a_{1,1} \end{array} \right)</math>,<math>\left( \begin{array}{c} a_{2,2} \end{array} \right)</math>,<math>\left( \begin{array}{c} a_{3,3} \end{array} \right)</math><br><math>\left( \begin{array}{cc} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{array} \right)</math>, <math>\left( \begin{array}{cc} a_{1,1} & a_{1,3} \\ a_{3,1} & a_{3,3} \end{array} \right)</math>, <math>\left( \begin{array}{cc} a_{2,2} & a_{2,3} \\ a_{3,2} & a_{3,3} \end{array} \right)</math><br><math>\left( \begin{array}{ccc} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{array} \right)</math><br> | * principal submatrix<br><math>\left( \begin{array}{c} a_{1,1} \end{array} \right)</math>,<math>\left( \begin{array}{c} a_{2,2} \end{array} \right)</math>,<math>\left( \begin{array}{c} a_{3,3} \end{array} \right)</math><br><math>\left( \begin{array}{cc} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{array} \right)</math>, <math>\left( \begin{array}{cc} a_{1,1} & a_{1,3} \\ a_{3,1} & a_{3,3} \end{array} \right)</math>, <math>\left( \begin{array}{cc} a_{2,2} & a_{2,3} \\ a_{3,2} & a_{3,3} \end{array} \right)</math><br><math>\left( \begin{array}{ccc} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{array} \right)</math><br> | ||
+ | * | ||
2011년 11월 22일 (화) 16:35 판
이 항목의 수학노트 원문주소
개요
- 실계수 n×n 행렬 M이 모든 0이 아닌 벡터 v 에 대하여, \( z^{T}M z > 0 \) 를 만족시킬 때, 양의 정부호 행렬이라 한다
- 실베스터 판정법 - leading principal minor 주 소행렬식이 모두 양수임을 보이면 된다
2×2 행렬의 경우
- 행렬
\(\left( \begin{array}{cc} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{array} \right)\) - principal submatrix
\(\left( \begin{array}{c} a_{1,1} \end{array} \right)\), \(\left( \begin{array}{c} a_{2,2} \end{array} \right)\), \(\left( \begin{array}{cc} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{array} \right)\)
3×3 행렬의 경우
- 행렬
\(\left( \begin{array}{ccc} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{array} \right)\) - principal submatrix
\(\left( \begin{array}{c} a_{1,1} \end{array} \right)\),\(\left( \begin{array}{c} a_{2,2} \end{array} \right)\),\(\left( \begin{array}{c} a_{3,3} \end{array} \right)\)
\(\left( \begin{array}{cc} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{array} \right)\), \(\left( \begin{array}{cc} a_{1,1} & a_{1,3} \\ a_{3,1} & a_{3,3} \end{array} \right)\), \(\left( \begin{array}{cc} a_{2,2} & a_{2,3} \\ a_{3,2} & a_{3,3} \end{array} \right)\)
\(\left( \begin{array}{ccc} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{array} \right)\)
역사
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- [1]http://en.wikipedia.org/wiki/Positive-definite_matrix
- http://en.wikipedia.org/wiki/Sylvester's_criterion
- The Online Encyclopaedia of Mathematics
리뷰논문, 에세이, 강의노트
관련논문
- Gilbert, George T. 1991. “Positive Definite Matrices and Sylvester’s Criterion”. The American Mathematical Monthly 98 (1) (1월 1): 44-46. doi:10.2307/2324036.
- http://www.jstor.org/action/doBasicSearch?Query=
- http://www.ams.org/mathscinet
- http://dx.doi.org/10.2307/2324036