"울프람알파의 활용"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
7번째 줄: 7번째 줄:
 
 
 
 
  
<h5>개요</h5>
+
==개요</h5>
  
 
* 울프람 알파
 
* 울프람 알파
16번째 줄: 16번째 줄:
 
 
 
 
  
<h5>문제풀이와 울프람알파</h5>
+
==문제풀이와 울프람알파</h5>
  
 
* [http://blog.wolframalpha.com/2009/12/01/step-by-step-math/ Step-by-Step Math]
 
* [http://blog.wolframalpha.com/2009/12/01/step-by-step-math/ Step-by-Step Math]
25번째 줄: 25번째 줄:
 
 
 
 
  
<h5>방정식의 풀이</h5>
+
==방정식의 풀이</h5>
  
 
* [http://blog.wolframalpha.com/2010/01/14/solving-equations-with-wolframalpha/ Solving Equations with Wolfram|Alpha]
 
* [http://blog.wolframalpha.com/2010/01/14/solving-equations-with-wolframalpha/ Solving Equations with Wolfram|Alpha]
33번째 줄: 33번째 줄:
 
 
 
 
  
<h5>숙제와 울프람알파</h5>
+
==숙제와 울프람알파</h5>
  
 
* http://blog.wolframalpha.com/2010/01/22/is-it-cheating-to-use-wolframalpha-for-math-homework/
 
* http://blog.wolframalpha.com/2010/01/22/is-it-cheating-to-use-wolframalpha-for-math-homework/
41번째 줄: 41번째 줄:
 
 
 
 
  
<h5>그래프 그리기</h5>
+
==그래프 그리기</h5>
  
 
 
 
 
100번째 줄: 100번째 줄:
 
 
 
 
  
<h5>관련된 항목들</h5>
+
==관련된 항목들</h5>
  
 
* [[프랙탈]]
 
* [[프랙탈]]

2012년 11월 1일 (목) 01:37 판

이 항목의 스프링노트 원문주소

 

 

==개요

 

==문제풀이와 울프람알파

 

 

==방정식의 풀이

 

 

==숙제와 울프람알파

 

 

==그래프 그리기

 

 

 

 

10.4.44.

http://www.wolframalpha.com/input/?i=(r-(8%2B8sin+theta))(r+sin+theta+-4)%3D0

[/pages/4176465/attachments/2110589 1MSP761197847h1hg25e7he00004g3ehh9ag590ea81.gif]

Note that \(2\sin^2 \alpha +2\sin \alpha-1=0\).

Since \(0< \alpha <\frac{\pi}{2}\), \(\sin \alpha =\frac{\sqrt 3 -1}{2}\) and \(\cos \alpha =\sqrt{\frac{\sqrt 3}{2}}\)

 

\(\frac{1}{2}\int_{\alpha}^{\pi-\alpha}r^2 d\theta=\int_{\alpha}^{\pi/2}r^2 d\theta=\int_{\alpha}^{\pi/2}64(1+\sin\theta)^2d\theta\)

\(=64\int_{\alpha}^{\pi/2}(1+\sin\theta)^2d\theta=64\int_{\alpha}^{\pi/2}1+2\sin\theta+\sin^2\theta d\theta\)

\(=64[\frac{3}{2}\theta - 2 \cos \theta- \frac{1}{4}\sin 2\theta]_{\alpha}^{\pi/2}=[96\theta - 128 \cos \theta- 16\sin 2\theta]_{\alpha}^{\pi/2}\)

\(=[96\theta - 128 \cos \theta- 16\sin 2\theta]_{\alpha}^{\pi/2}=48\pi-96\alpha+128\cos \alpha+16\sin 2\alpha\)

We need to subtract from this the area of the triangle which is given by \[2\times \frac{1}{2}\cdot 4 (8+8\sin\alpha)\sin (\pi/2-\alpha)=32(1+\sin\alpha)\cos \alpha=32\cos \alpha+16 \sin 2\alpha\]

So the area will be given by \[48\pi-96\alpha+128\cos \alpha+16\sin 2\alpha-(32\cos \alpha+16 \sin 2\alpha)=48\pi-96\alpha+96\cos \alpha\approx 204.16\]

http://www.wolframalpha.com/input/?i=N[48pi+-96(arcsin{(sqrt+3+-+1)/2})%2B96(sqrt((sqrt+3)/2)),10]

 

 

 

 

 

사용예

 

==관련된 항목들