"자코비 타원함수"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로) |
|||
7번째 줄: | 7번째 줄: | ||
− | + | ==개요</h5> | |
<math>\text{sn}(z|-1)=z-\frac{z^5}{10}+\frac{z^9}{120}-\frac{11 z^{13}}{15600}+\frac{211 z^{17}}{3536000}+O\left(z^{21}\right)</math> | <math>\text{sn}(z|-1)=z-\frac{z^5}{10}+\frac{z^9}{120}-\frac{11 z^{13}}{15600}+\frac{211 z^{17}}{3536000}+O\left(z^{21}\right)</math> | ||
15번째 줄: | 15번째 줄: | ||
− | + | ==덧셈공식</h5> | |
<math>\begin{align}\operatorname{cn}(x+y) & ={\operatorname{cn}(x)\;\operatorname{cn}(y)- \operatorname{sn}(x)\;\operatorname{sn}(y)\;\operatorname{dn}(x)\;\operatorname{dn}(y)\over {1 - k^2 \;\operatorname{sn}^2 (x) \;\operatorname{sn}^2 (y)}}, \\[8pt]\operatorname{sn}(x+y) & ={\operatorname{sn}(x)\;\operatorname{cn}(y)\;\operatorname{dn}(y) +\operatorname{sn}(y)\;\operatorname{cn}(x)\;\operatorname{dn}(x)\over {1 - k^2 \;\operatorname{sn}^2 (x)\; \operatorname{sn}^2 (y)}}, \\[8pt]\operatorname{dn}(x+y) & ={\operatorname{dn}(x)\;\operatorname{dn}(y)- k^2 \;\operatorname{sn}(x)\;\operatorname{sn}(y)\;\operatorname{cn}(x)\;\operatorname{cn}(y)\over {1 - k^2 \;\operatorname{sn}^2 (x)\; \operatorname{sn}^2 (y)}}.\end{align}</math> | <math>\begin{align}\operatorname{cn}(x+y) & ={\operatorname{cn}(x)\;\operatorname{cn}(y)- \operatorname{sn}(x)\;\operatorname{sn}(y)\;\operatorname{dn}(x)\;\operatorname{dn}(y)\over {1 - k^2 \;\operatorname{sn}^2 (x) \;\operatorname{sn}^2 (y)}}, \\[8pt]\operatorname{sn}(x+y) & ={\operatorname{sn}(x)\;\operatorname{cn}(y)\;\operatorname{dn}(y) +\operatorname{sn}(y)\;\operatorname{cn}(x)\;\operatorname{dn}(x)\over {1 - k^2 \;\operatorname{sn}^2 (x)\; \operatorname{sn}^2 (y)}}, \\[8pt]\operatorname{dn}(x+y) & ={\operatorname{dn}(x)\;\operatorname{dn}(y)- k^2 \;\operatorname{sn}(x)\;\operatorname{sn}(y)\;\operatorname{cn}(x)\;\operatorname{cn}(y)\over {1 - k^2 \;\operatorname{sn}^2 (x)\; \operatorname{sn}^2 (y)}}.\end{align}</math> | ||
25번째 줄: | 25번째 줄: | ||
− | + | ==역사</h5> | |
36번째 줄: | 36번째 줄: | ||
− | + | ==메모</h5> | |
46번째 줄: | 46번째 줄: | ||
− | + | ==관련된 항목들</h5> | |
* [[렘니스케이트(lemniscate) 곡선의 길이와 타원적분]] | * [[렘니스케이트(lemniscate) 곡선의 길이와 타원적분]] | ||
70번째 줄: | 70번째 줄: | ||
− | + | ==매스매티카 파일 및 계산 리소스</h5> | |
* https://docs.google.com/file/d/0B8XXo8Tve1cxeVNacEtlVGlYeU0/edit | * https://docs.google.com/file/d/0B8XXo8Tve1cxeVNacEtlVGlYeU0/edit | ||
85번째 줄: | 85번째 줄: | ||
− | + | ==사전 형태의 자료</h5> | |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
97번째 줄: | 97번째 줄: | ||
− | + | ==리뷰논문, 에세이, 강의노트</h5> | |
105번째 줄: | 105번째 줄: | ||
− | + | ==관련논문</h5> | |
* http://www.jstor.org/action/doBasicSearch?Query= | * http://www.jstor.org/action/doBasicSearch?Query= | ||
115번째 줄: | 115번째 줄: | ||
− | + | ==관련도서</h5> | |
* 도서내검색<br> | * 도서내검색<br> | ||
** http://books.google.com/books?q= | ** http://books.google.com/books?q= | ||
** http://book.daum.net/search/contentSearch.do?query= | ** http://book.daum.net/search/contentSearch.do?query= |
2012년 11월 1일 (목) 02:22 판
이 항목의 수학노트 원문주소
==개요
\(\text{sn}(z|-1)=z-\frac{z^5}{10}+\frac{z^9}{120}-\frac{11 z^{13}}{15600}+\frac{211 z^{17}}{3536000}+O\left(z^{21}\right)\)
==덧셈공식
\(\begin{align}\operatorname{cn}(x+y) & ={\operatorname{cn}(x)\;\operatorname{cn}(y)- \operatorname{sn}(x)\;\operatorname{sn}(y)\;\operatorname{dn}(x)\;\operatorname{dn}(y)\over {1 - k^2 \;\operatorname{sn}^2 (x) \;\operatorname{sn}^2 (y)}}, \\[8pt]\operatorname{sn}(x+y) & ={\operatorname{sn}(x)\;\operatorname{cn}(y)\;\operatorname{dn}(y) +\operatorname{sn}(y)\;\operatorname{cn}(x)\;\operatorname{dn}(x)\over {1 - k^2 \;\operatorname{sn}^2 (x)\; \operatorname{sn}^2 (y)}}, \\[8pt]\operatorname{dn}(x+y) & ={\operatorname{dn}(x)\;\operatorname{dn}(y)- k^2 \;\operatorname{sn}(x)\;\operatorname{sn}(y)\;\operatorname{cn}(x)\;\operatorname{cn}(y)\over {1 - k^2 \;\operatorname{sn}^2 (x)\; \operatorname{sn}^2 (y)}}.\end{align}\)
==역사
==메모
- Math Overflow http://mathoverflow.net/search?q=
==관련된 항목들
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
==매스매티카 파일 및 계산 리소스
- https://docs.google.com/file/d/0B8XXo8Tve1cxeVNacEtlVGlYeU0/edit
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
==사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Jacobi_elliptic_functions
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
==리뷰논문, 에세이, 강의노트
==관련논문
==관련도서