"초기하급수(Hypergeometric series)"의 두 판 사이의 차이
12번째 줄: | 12번째 줄: | ||
<math>\frac{\beta_{n+1}}{\beta_n} = \frac{1}{n+1}</math> | <math>\frac{\beta_{n+1}}{\beta_n} = \frac{1}{n+1}</math> | ||
+ | |||
+ | |||
+ | |||
+ | 계수의 비가 다음과 같이 주어지는 경우 | ||
+ | |||
+ | |||
+ | |||
+ | The ratio between consecutive coefficients now has the form <math>\frac{c(a_1+n)\dots(a_p+n)}{d(b_1+n)\dots(b_q+n)(1+n)}</math> where ''c'' and ''d'' are the leading coefficients of ''A'' and ''B''. The series then has the form :<math>1 + \frac{a_1\dots a_p}{b_1\dots b_q.1}\frac{cz}{d} + \frac{a_1\dots a_p}{b_1\dots b_q.1} \frac{(a_1+1)\dots(a_p+1)}{(b_1+1)\dots (b_q+1).2}\left(\frac{cz}{d}\right)^2+\dots</math>, or, by scaling z by the appropriate factor and rearranging, :<math>1 + \frac{a_1\dots a_p}{b_1\dots b_q}\frac{z}{1!} + \frac{a_1(a_1+1)\dots a_p(a_p+1)}{b_1(b_1+1)\dots b_q(b_q+1)}\frac{z^2}{2!}+\dots</math>. This has the form of an [[generating function|exponential generating function]]. The standard notation for this series is :<math>\,_pF_q(a_1,\ldots,a_p;b_1,\ldots,b_q;z)</math>, although variations are sometimes used<ref>{{MathWorld|title=Generalized Hypergeometric Function|urlname=GeneralizedHypergeometricFunction}}</ref>. Using the rising factorial or [[Pochhammer symbol]]: :<math>(a)_n=a(a+1)(a+2)...(a+n-1),\,(a)_0 = 1</math>, this can be written :<math>\,_pF_q(a_1,\ldots,a_p;b_1,\ldots,b_q;z) = \sum_{n=0}^\infty \frac{(a_1)_n\dots(a_p)_n}{(b_1)_n\dots(b_q)_n} \, \frac {z^n} {n!}</math> | ||
18번째 줄: | 26번째 줄: | ||
<h5>가우스의 초기하함수</h5> | <h5>가우스의 초기하함수</h5> | ||
+ | |||
+ | <math>\,_2F_1(a,b;c;z)</math> | ||
+ | |||
+ | <math>z(1-z)\frac{d^2w}{dz^2}+(c-(a+b+1)z)\frac{dw}{dz}-abw = 0</math> | ||
+ | |||
+ | |||
92번째 줄: | 106번째 줄: | ||
** George E. Andrews | ** George E. Andrews | ||
** This paper surveys recent applications of basic hypergeometric functions to partitions, number theory, finite vector spaces, combinatorial identities and physics. | ** This paper surveys recent applications of basic hypergeometric functions to partitions, number theory, finite vector spaces, combinatorial identities and physics. | ||
− | * http://ko.wikipedia.org/wiki/ | + | * [http://ko.wikipedia.org/wiki/%EC%B4%88%EA%B8%B0%ED%95%98 http://ko.wikipedia.org/wiki/초기하] |
− | * http://en.wikipedia.org/wiki/ | + | * http://en.wikipedia.org/wiki/hypergeometric_functions |
* http://www.wolframalpha.com/input/?i= | * http://www.wolframalpha.com/input/?i= | ||
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q= | * http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q= |
2009년 7월 1일 (수) 16:48 판
초기하급수
- 두 연속한 계수의 비가 \(n\) 에 관한 유리함수인 멱급수를 초기하급수라 함. 즉,
\(\beta_0 + \beta_1 z + \beta_2 z^2 + \dots = \sum_n \beta_n z^n\)
\(\frac{\beta_{n+1}}{\beta_n} = \frac{A(n)}{B(n)}\) 이고 \({A(n)},{B(n)}\)은 n에 관한 다항식인 경우
- 간단한 예
\(1+\frac{z}{1!}+\frac{z^2}{2!}+\frac{z^3}{3!}+\dots\)
\(\beta_n = \frac{1}{n!}\)
\(\frac{\beta_{n+1}}{\beta_n} = \frac{1}{n+1}\)
계수의 비가 다음과 같이 주어지는 경우
The ratio between consecutive coefficients now has the form \(\frac{c(a_1+n)\dots(a_p+n)}{d(b_1+n)\dots(b_q+n)(1+n)}\) where c and d are the leading coefficients of A and B. The series then has the form \[1 + \frac{a_1\dots a_p}{b_1\dots b_q.1}\frac{cz}{d} + \frac{a_1\dots a_p}{b_1\dots b_q.1} \frac{(a_1+1)\dots(a_p+1)}{(b_1+1)\dots (b_q+1).2}\left(\frac{cz}{d}\right)^2+\dots\], or, by scaling z by the appropriate factor and rearranging, \[1 + \frac{a_1\dots a_p}{b_1\dots b_q}\frac{z}{1!} + \frac{a_1(a_1+1)\dots a_p(a_p+1)}{b_1(b_1+1)\dots b_q(b_q+1)}\frac{z^2}{2!}+\dots\]. This has the form of an exponential generating function. The standard notation for this series is \[\,_pF_q(a_1,\ldots,a_p;b_1,\ldots,b_q;z)\], although variations are sometimes used[1]. Using the rising factorial or Pochhammer symbol: \[(a)_n=a(a+1)(a+2)...(a+n-1),\,(a)_0 = 1\], this can be written \[\,_pF_q(a_1,\ldots,a_p;b_1,\ldots,b_q;z) = \sum_{n=0}^\infty \frac{(a_1)_n\dots(a_p)_n}{(b_1)_n\dots(b_q)_n} \, \frac {z^n} {n!}\]
가우스의 초기하함수
\(\,_2F_1(a,b;c;z)\)
\(z(1-z)\frac{d^2w}{dz^2}+(c-(a+b+1)z)\frac{dw}{dz}-abw = 0\)
상위 주제
하위페이지
재미있는 사실
많이 나오는 질문과 답변
- 네이버 지식인
- http://kin.search.naver.com/search.naver?where=kin_qna&query=초기하급수
- http://kin.search.naver.com/search.naver?where=kin_qna&query=초기하급수
- http://kin.search.naver.com/search.naver?where=kin_qna&query=
- http://kin.search.naver.com/search.naver?where=kin_qna&query=
- http://kin.search.naver.com/search.naver?where=kin_qna&query=
관련된 고교수학 또는 대학수학
관련된 다른 주제들
관련도서 및 추천도서
- Conformal Mapping
- Zeev Nehari
- 도서내검색
- 도서검색
참고할만한 자료
- Applications of Basic Hypergeometric Functions
- SIAM Rev. Volume 16, Issue 4, pp. 441-484 (October 1974)
- George E. Andrews
- This paper surveys recent applications of basic hypergeometric functions to partitions, number theory, finite vector spaces, combinatorial identities and physics.
- http://ko.wikipedia.org/wiki/초기하
- http://en.wikipedia.org/wiki/hypergeometric_functions
- http://www.wolframalpha.com/input/?i=
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
- 다음백과사전 http://enc.daum.net/dic100/search.do?q=
- 대한수학회 수학 학술 용어집
관련기사
- 네이버 뉴스 검색 (키워드 수정)
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
블로그
- 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
- 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=
이미지 검색
- http://commons.wikimedia.org/w/index.php?title=Special%3ASearch&search=
- http://images.google.com/images?q=
- http://www.artchive.com